
1

Interactive Raytracing:
The nirt Command

Clifford Yapp

Table of Contents
About NIRT .. 2
NIRT: Basic Syntax and Operations .. 2

Command Line Help ... 2
Loading a Model .. 2
Shooting a Ray .. 3
Moving the Origination Point ... 4
Backing Out of a Model .. 4
Changing the Direction of the Ray .. 6
Reporting of Overlaps ... 6

Graphical Visualization: NIRT in MGED ... 7
Basic Usage .. 7
Backing Out with NIRT in MGED .. 8
Ray Segment Coloring with NIRT and MGED ... 10
Mouse-Based NIRT Usage ... 12
Configuring NIRT with the Query Ray Control Panel .. 13

Reporting Options ... 18
How to Change the Reporting Format .. 18
Handling Attribute Reporting .. 20
Changing Units .. 21

Other Options .. 22
Silent and Verbose Modes .. 22
Using Air Regions .. 22
Reading an Orientation Matrix and Commands .. 23

Scripting NIRT ... 24
Command Line Scripts: The e Option .. 24
Script Files: Other Uses of the f Option .. 25
Defining a Custom Reporting Format ... 26
Customizing Report Output in MGED .. 27
Reporting Attributes in MGED: Advanced Formatting and Scripting 28
Available Information for Inclusion in Reports ... 29

Summary ... 29
A. Report Format Variable Listings ... 29
B. Debugging Options ... 31

librt Debugging Information ... 32
NIRT Debugging Information ... 32

The nirt command casts individual rays according to user-specified options, and reports back a wide variety of
information about the model along the specified ray. It is extremely useful for tasks such as measuring the thickness of
objects and identifying gaps between objects. When used within the MGED environment, NIRT will produce a visible
ray path, coloring the ray according to the geometry encountered along the ray. It is also scriptable, allowing users to
develop their own custom analysis routines.

Interactive Raytracing:
The nirt Command

2

About NIRT
The NIRT (Natalie's Interactive Ray-Tracer) command line tool provides a user-level interface to the low-
level routines defining the ray tracing logic, allowing a user to specify and cast an individual ray and tailor
the information reported. It was originally written by Natalie L. Eberius and Paul J. Tanenbaum in the
early 1990s, with additional updates by others over the years. Significant work was done by Bob Parker
in the late 1990s to integrate NIRT with MGED, resulting in wireframe visualization of ray paths and the
Query Ray Control Panel.

NIRT: Basic Syntax and Operations
There are two environments within which NIRT can be used - inside the MGED interactive geometry
editor and within its own command line interactive environment. Consequently, there are three command
line environments where behavior needs to be described in this document; operating system command
prompt, NIRT command prompt, and MGED command prompt. The convention used here will be:

Command Line Environment Command Type

Operating System Command Line Prompt command

NIRT Command Prompt interactive command

MGED Command Prompt MGED command

Command Line Help

NIRT provides an h option which prints out a list of available options and command syntax:

user@machine ~ $ nirt --h
Usage: 'nirt [options] model.g objects...'
Options:
 -b back out of geometry before first shot
 -B n set rt_bot_minpieces=n
 -e script run script before interacting
 -f sfile run script sfile before interacting
 -L list output formatting options
 -M read matrix, cmds on stdin
 -O action handle overlap claims via action
 -s run in silent (non-verbose) mode
 -u n set use_air=n (default 0)
 -v run in verbose mode
 -x v set librt(3) diagnostic flag=v
 -X v set nirt diagnostic flag=v

Loading a Model

There will be a number of models used to illustrate various NIRT behaviors, all of which will be centered
around regions created with various combinations of 2mm arb8 cubes. The left cube is centered at (-2,
0, 0), the center cube at (0, 0, 0) and the right cube at (2, 0, 0). One additional arb8 will be defined to
overlap the center cube with side lengths in the z direction of 4mm. The various models based off of these
primitives will be read from a database called nirt_example.g.

Interactive Raytracing:
The nirt Command

3

Wireframe view of the three arb8 cubes which will be used
to build example models for illustrating NIRT behavior.

Although there are many nirt options available, only the database name and objects are essential to get
started:

nirt {model.g} {objects}
where objects is a list of objects in the database separated by spaces. To begin, select the object
center_cube.r object with interactive command line NIRT. The form of the command is: 1:

nirt nirt_example.g center_cube.r

This starts up the NIRT command line interactive environment:

BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Object 'center_cube.r' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-1, -1, -1) model_max = (1, 1, 1)
nirt>

The first three lines identify the release number, tool being used, date of compilation or date release was
made, and user. The fourth line identifies the database file. The next three lines are informational messages
relating to model setup. The database title and units are then printed. The last pieces of information,
model_min and model_max, are the outer bounds of the objects specified.

Shooting a Ray
With the example loaded into NIRT, the s interactive command is used to shoot a ray:

nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

What happened and what do these results mean? The following table breaks down the structure of the
report:

1 To quickly find out what objects are in a database, use the commands mged -c nirt_example.g tops to see all top level objects and mged -c
nirt_example.g ls to see all objects in the model.

Interactive Raytracing:
The nirt Command

4

Report Element Meaning

Origin Origination point of the ray (NOT the model origin)

x y z Coordinates in the reference frame of the model

h v d Coordinates in the reference frame of the view

Direction Direction in which the ray is traced; reported as a unit vector
in model coordinates and as an azimuth/elevation angle pair

Region Name Name of region as recorded in database file

Entry (x y z) Point at which ray first enters the region

LOS Line of Sight thickness. In this basic instance, it is
equivalent to the thickness of the object along the ray vector.

Obliq_in Obliquity of the ray at the point of entry into the region (0 in this case,
because the ray happened to be perpendicular to the surface in question)

Attrib Additional attributes the region in question has assigned
and the user requested (in this case, none were requested)

Because the ray only hit center_cube.r, only center_cube.r appears in the report. (Remember NIRT was
only supplied with center_cube.r for a target object to begin with.) Many examples of real world NIRT
usage will have much more complex geometries and hence longer reports.

Moving the Origination Point
If we move the origin to some point other than the sphere center, a different ray is cast and the reported
intersections change. The xyz interactive command will print the current origin if given no arguments, and
accepts a list of points to change the origin:

nirt> xyz
(x, y, z) = (0.00, 0.00, 0.00)
nirt> xyz 0 0 .5
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.50000000) (h v d) = (0.0000 0.5000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.5000) 2.0000 0.0000

Backing Out of a Model
Although in both previous cases the ray's origin was inside the cube, NIRT backed up to the point of first
intersection along the indicated vector to report both LOS thickness and entry. This behavior is specific to
the case of an origination point inside a region. In the case where the origination point of the ray is between
two objects belonging to the same region, NIRT will report only those portions of the region along its path
forward. To ensure that a ray always starts outside the entire geometry, the backout interactive command
is used.2 The backout command moves the starting point outside the bounding box of the model. This
ensures that all segments along a given ray path will be reported. As an illustration, reload nirt_example.g
and this time specify left_and_right_cubes.r (defined as the combination of left_cube.s and right_cube.s).
Cast rays before and after backout:

nirt> q
Quitting...

2 To perform this operation automatically when the model is loaded, supply the b flag to nirt at startup: nirt -b.

Interactive Raytracing:
The nirt Command

5

user@machine ~ $ nirt nirt_example.g left_and_right_cubes.r
BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Object 'left_and_right_cubes.r' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> backout 1
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

Note that in the first raytrace, left_and_right_cubes.r did not backtrack to generate its LOS thickness value,
and when the backout option was applied, left_and_right_cubes.r gained an extra entry. The double report
for left_and_right_cubes.r is not a mistake; the ray did indeed enter and exit the region twice once the
backout interactive command changed the origination point.

It is important to understand that the backout interactive command does not permanently change the
origination point of the ray; it requests an automatic adjustment of the origination point based on the model
for the casting of the ray, and then restores the original specified origination point. If the user no longer
wishes to have NIRT back the origination point out of the model, deactivating the backout flag (supplying
0 to the backout interactive command) will restore the non-backout point. If the xyz interactive command
is used to change the origination point while backout is activated, the backout routine will back out from
the new point. For example:

nirt> backout 0
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.00)
nirt> xyz 0 0 .5
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.50000000) (h v d) = (0.0000 0.5000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.5000) 2.0000 0.0000
nirt> backout 1
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> backout 0
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> backout 1
nirt> xyz 0 0 .8
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.80000000) (h v d) = (0.0000 0.8000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.8000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.8000) 2.0000 0.0000
nirt> backout 0
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.80000000) (h v d) = (0.0000 0.8000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib

Interactive Raytracing:
The nirt Command

6

left_and_right_cubes.r (-1.0000 0.0000 0.8000) 2.0000 0.0000
nirt>

Changing the Direction of the Ray
The other fundamental operation needed to make NIRT usable is changing the direction of the ray. This
is achieved with the dir interactive command, which either prints out the current direction unit vector (if
no arguments are supplied) or takes x, y, and z components of a vector separated by spaces and changes
the direction. To make interpreting the results easier for this example, the origination point of the ray is
first returned to the origin:

nirt> xyz 0 0 0
nirt> dir
(x, y, z) = (-1.00, 0.00, 0.00)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (-0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> dir -1 -.5 0
nirt> dir
(x, y, z) = (-0.89, -0.45, 0.00)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-0.89442719 -0.44721360 0.00000000) (az el) = (26.56505118 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 -0.5000 0.0000) 1.1180 26.5651
nirt> dir 0 0 1
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 1.00000000) (az el) = (0.00000000 -90.00000000)
You missed the target
nirt>

The first shot, in the default -x direction, intersects one of the sections. The second shot changes the
aim slightly off the -x axis, with different results - the LOS thickness is now longer. Obliq_in changed as
well, because the ray is no longer perpendicular to the tangent at the point of intersection. Notice that the
direction was not specified using a unit vector, but was reported as one; the conversion to a unit vector
is handled automatically by NIRT. The third shot is a more drastic change of direction, from the -x to
positive z. As there are no portions of the region present along that path, a miss is reported.

Reporting of Overlaps
In many cases, a geometry will have overlaps: errors where a model is assigning two physical regions to
one volume. To demonstrate this behavior, NIRT is reloaded with overlap_example:

nirt> q
Quitting...

user@machine ~ $ nirt nirt_example.g overlap_example
BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Object 'overlap_example' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-3, -1, -2) model_max = (3, 1, 2)
nirt> backout 1
nirt> s

Interactive Raytracing:
The nirt Command

7

Origin (x y z) = (7.48331477 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
all_cubes.r (3.0000 0.0000 0.0000) 6.0000 0.0000
OVERLAP: 'center_overlap.r' and 'all_cubes.r' xyz_in=(1 0 0) los=2
nirt>

The last line in the preceding report is reporting that the regions all_cubes.r and center_overlap.r are both
claiming the same volume, starting at (1, 0, 0) and continuing to do so for 2 mm per the LOS thickness.
If the direction and origin are changed to shoot along the z axis:

nirt> dir 0 0 -1
nirt> s
Origin (x y z) = (0.00000000 0.00000000 7.48331477) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 -1.00000000) (az el) = (0.00000000 90.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_overlap.r (0.0000 0.0000 2.0000) 1.0000 0.0000
OVERLAP: 'center_overlap.r' and 'all_cubes.r' xyz_in=(0 0 1) los=2
all_cubes.r (0.0000 0.0000 1.0000) 2.0000 0.0000
center_overlap.r (0.0000 0.0000 -1.0000) 1.0000 0.0000
nirt>

Along that vector, center_overlap.r is encountered first, then all_cubes.r intersecting with
center_overlap.r. 3

It should be pointed out that overlaps are usually regarded as modeling errors and need to be corrected,
unless they are below some previously established threshold for precision in the model. One of the potential
uses of NIRT is to provide detailed information on which regions are overlapping and where, although
tools such as rtcheck typically provide more comprehensive summaries of overlap problems.

Graphical Visualization: NIRT in MGED
The command line interaction provided by NIRT has few options for graphic visualization, but MGED
allows the use and visualization of NIRT rays. MGED provides a nirt command, but rather than starting an
interactive environment, each invocation of the nirt MGED command casts one ray and returns a report,
together with information allowing MGED to graphically plot the ray on its wireframe view.

Basic Usage
The most important thing to remember when starting to use NIRT in MGED is that the ray direction is
always perpendicular to the viewing plane. In other words, the user is looking in the direction in which the
ray will be cast. There is no option to choose a different direction from the MGED command line, and as
a consequence it may initially look like nothing has happened in the MGED wireframe. The report on the
command line will print out, but the user will have to change the direction from which the model is being
viewed in MGED before the graphical results will be visible.

Another important point to remember about using NIRT in MGED is that the user does not specify objects
as arguments to the nirt MGED command. Even if supplied with objects it will not use them - the objects
used are those active in MGED's wireframe view.

For example, load nirt_example.g in MGED, draw center_cube.r, set the view direction to a front view
looking down the negative x axis, and run the nirt MGED command:

3 The last two lines that appear in the output when the direction vector is changed are a result of how the raytracing library keeps track of regions
internally. Even when in an overlap, the ray is considered to be in only one region at a time. In this particular overlap situation, it might be either
region, so librt selects the region with the lowest bit number (for more information, see rt_defoverlap in librt/bool.c). If the ray happens to exit
the lowest bit number region when it exits the overlap the active region changes again and another line is generated. Ultimately the difference is
inconsequential and can be disregarded. Both reports contain the key information: the overlap to be removed.

Interactive Raytracing:
The nirt Command

8

mged> draw center_cube.r
mged> ae 0 0
mged> nirt

Firing from view center...
Origin (x y z) = (0.00 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (1.000 0.000 0.000) 2.00 0.000

mged>

View of wireframe immediately after running NIRT within MGED.

Select the MGED view window and press "3" to view the path of the ray:

View of wireframe after changing view direction, showing path of NIRT ray.

Because the ray encountered only a single region, the only visible path drawn is the intersection path of
the ray and the region (the light blue line). The region intersection was backed out to the first intersection
with that region, despite the origination point of the ray being at the center of the sphere.

Note

When a miss is reported by NIRT, no line is drawn in the wireframe view.

Backing Out with NIRT in MGED
Because NIRT's interactive mode cannot be used while in MGED, the b flag must be provided to the
invocation of the nirt MGED command to back out the origination point while using NIRT within MGED.

Interactive Raytracing:
The nirt Command

9

For comparison purposes, it is more instructive to examine left_and_right_cubes.r than center_cube.r. To
generate a "no backout" control view, the display is cleared, left_and_right_cubes.r is drawn, the view
direction is set, NIRT (no b flag) is run, and the view is switched to view the ray path:

mged> B left_and_right_cubes.r
mged> ae 0 0
mged> nirt

Firing from view center...
Origin (x y z) = (0.00 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
region1.r (-300.000 0.000 0.000) 100.00 0.000

mged> ae 90 0
mged>

View of NIRT ray intersecting left_and_right_cubes.r with ray origin at the global origin.

The ray did indeed intersect a solid area as indicated in the report, but only in one of the two cubes making
up the region. Repeating the steps using the b flag to back the origination point out produces somewhat
different results:

mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_and_right_cubes.r (3.000 0.000 0.000) 2.00 0.000
left_and_right_cubes.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

View of NIRT ray intersecting left_and_right_cubes.r with ray origin backed out of the region.

Notice that the ray path is now drawn over a much larger area, and multiple colors are used. The colors
have significance; the purple segment in the NIRT ray path corresponds to the empty area or "gap" between
the two solid areas.

Interactive Raytracing:
The nirt Command

10

Ray Segment Coloring with NIRT and MGED
NIRT uses colors to visually represent the information seen in text form in its report. The conventions are:

Property Color

Solid Alternates between Blue and Yellow

Gap Purple

Overlap White

To illustrate these outputs, a series of cube configurations will be examined. First, all three are drawn at
once, the viewing direction is set to the -x direction, nirt -b is run, and the view is changed to see the results:

mged> B left_cube.r center_cube.r right_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.000 0.000) 2.00 0.000
center_cube.r (1.000 0.000 0.000) 2.00 0.000
left_cube.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

Side view of aligned individual arb8 cubes with a single NIRT ray passing through all three cubes.

There are three regions present, according to the text report. The first region encountered is that associated
with right_cube.r, and the portion of the ray intersection in that region is light blue. The second region,
center_cube.r, has its intersection with the yellow ray. Note the color of the intersection in left_cube.r is the
same as that shown for right_cube.r. It is important to realize that the same intersection color in two
different areas does NOT imply that they are the same region, material, etc. Nor do different colors
guarantee that noncontiguous geometric areas are in different regions. The color swap is simply an aid
when viewing two different contiguous solid regions that would otherwise be indistinguishable visually.
For example, if all three cubes were unioned into a single region, the wireframe would look identical but
the region report would be very different. In that case, there would be only one region, and only one line
color would be needed. To illustrate:

mged> B all_cubes.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
all_cubes.r (3.000 0.000 0.000) 6.00 0.000

Interactive Raytracing:
The nirt Command

11

mged> ae 90 0

View of wireframe of three arb8 cubes combined into a single region with a NIRT ray
passing through the region on the same path as that used for the individual arb8 cubes.

Without the color-changing mechanism, the two previous situations would have been visually identical
despite having very different properties.

The other two situations that result in a color change are gaps and overlaps. A gap in NIRT is any area
along the ray path after a solid portion of a region is encountered and before the last solid portion of a
region is encountered that does not intersect a region. As an illustration, casting the same ray through just
left_cube.r and right_cube.r results in a gap where center_cube.r was in the first example in this section:

mged> B left_cube.r right_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.000 0.000) 2.00 0.000
left_cube.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

View of ray cast through only left_cube.r and right_cube.r.

To illustrate overlaps, both center_cube.r and all_cubes.r are drawn at the same time:

mged> B all_cubes.r center_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
all_cubes.r (3.000 0.000 0.000) 6.00 0.000
OVERLAP: 'center_cube.r' and 'all_cubes.r' xyz_in=(1 0 0) los=2

mged> ae 90 0

Interactive Raytracing:
The nirt Command

12

Example of an overlap region in a NIRT ray.

Mouse-Based NIRT Usage
In addition to providing a nirt command on the MGED command line, there is a mouse-based trigger
that can be used. In the MGED menu, selecting Settings->Mouse Behavior->Query Ray will change the
behavior of the mouse. Selecting the view window, placing the mouse at some point over the model, and
preforming a click will cast a ray in the view direction, centered at the point under the mouse pointer rather
than the view center.

For this example, bring up left_cube.r, center_cube.r, and right_cube.r:

mged> B left_cube.r center_cube.r right_cube.r
mged>

To aid with aiming, the grid overlay is enabled from the menu: Settings->Grid->Draw Grid. Grid spacing
is adjusted with Settings->Grid Spacing->Autosize:

Grid overlay on MGED wireframe.

With the mouse behavior set to Query Ray, the following results are from casting rays at (approximately)
the (-2 mm, 0 mm), (0 mm, 0 mm), and (2 mm, 0 mm) grid points:

Firing from (-1.992832, -4.000000, -0.028674)...
Origin (x y z) = (-1.99 -10.63 -0.03) (h v d) = (-1.99 -0.03 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_cube.r (-1.993 -1.000 -0.029) 2.00 0.000

Firing from (0.014337, -4.000000, -0.000000)...
Origin (x y z) = (0.01 -10.63 -0.00) (h v d) = (0.01 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (0.014 -1.000 0.000) 2.00 0.000

Firing from (2.021505, -4.000000, -0.028674)...
Origin (x y z) = (2.02 -10.63 -0.03) (h v d) = (2.02 -0.03 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)

Interactive Raytracing:
The nirt Command

13

 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (2.022 -1.000 -0.029) 2.00 0.000

Notice the entry points are off from the target values by small but significant amounts. A more precise
way to do this analysis is to use the "snap to grid" feature. This feature is enabled by selecting Modes-
>Snap To Grid. Repeating the above ray casts:

Firing from (-2.000000, -4.000000, -0.000000)...
Origin (x y z) = (-2.00 -10.63 -0.00) (h v d) = (-2.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_cube.r (-2.000 -1.000 0.000) 2.00 0.000

Firing from (0.000000, -4.000000, -0.000000)...
Origin (x y z) = (0.00 -10.63 -0.00) (h v d) = (-0.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (0.000 -1.000 0.000) 2.00 0.000

Firing from (2.000000, -4.000000, -0.000000)...
Origin (x y z) = (2.00 -10.63 -0.00) (h v d) = (2.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (2.000 -1.000 0.000) 2.00 0.000

These values are exact thanks to the corrections provided by the snap to grid mode.

Configuring NIRT with the Query Ray Control Panel
When using NIRT within MGED, some of its settings can be changed through a graphical dialog found in
the menu: MGED's Tools->Query Ray Control Panel. This section will describe the basic options. More
advanced settings will be covered later.

Enabling and Disabling Mouse-Based nirt Ray Casting

Earlier, mouse-based NIRT ray casting was enabled via a menu option. The Query Ray Control Panel
offers a more convenient option for toggling the same behavior via the Mouse Active check box in the
lower left corner of the dialog box. Selecting this check box and clicking Apply will activate the mouse as
a trigger for a ray cast. Clearing the Mouse Active check box and clicking Apply will restore the default
behavior.

Interactive Raytracing:
The nirt Command

14

MGED's Query Ray Control Panel with the Mouse Active check box circled.

Customizing NIRT Coloring in MGED

Although the default colors normally work well, it is possible to adjust the colors used for regions, overlaps,
and gaps:

MGED's Query Ray Control Panel with the Query Ray Colors circled.

The odd and even colors correspond to solid areas of regions, void is a gap between regions, and overlap
is the color for overlapping regions. Select a color by typing in an RGB color designation directly or using
the drop-down menu visible on the right end of each color entry:

MGED's Query Ray Control Panel with an example color list selected.

If the default color listings are insufficient, the Color Tool can be used for more fine-tuned selection:

Interactive Raytracing:
The nirt Command

15

MGED's Color Tool

Customizing the Pseudo-Primitive Base Name

MGED and NIRT use "pseudo" primitives to describe the actual graphical lines. They will not behave like
"normal" primitives, but they do need a name. By default, these names are the string "query_ray" and the
color used for the string. For example, the pseudo-primitive list after running NIRT on the cube example
with a gap is given below:

Wireframe view of a NIRT ray using multiple colors.

mged> who p
query_rayffff00 query_rayffff query_rayff00ff

This naming convention is used almost completely as an internal mechanism by MGED and NIRT. For
example, an l command on query_rayffff does not work:

mged> l query_rayffff
rt_db_get_internal(query_rayffff) failure

However, it is possible to use these names to erase the NIRT line segments from the drawing. For example,
to remove the purple line segments from the wireframe, the command:

Interactive Raytracing:
The nirt Command

16

mged> erase query_rayff00ff

will remove only the purple line segment and leave the others:

Wireframe view of the NIRT ray after erasing query_rayff00ff.

The Query Ray Control Panel also offers a way to customize the base name used for these pseudo-
primitives. Changing the Base Name from query_ray to line_segment and rerunning NIRT results in
pseudo-primitives named:

mged> who p
 line_segmentffff00 line_segmentffff line_segmentff00ff

MGED's Query Ray Control Panel showing a new Base Name.

Echoing the Internal nirt Command

The Echo Cmd check box in the Effects row allows the user to enable/disable the printing of the internal
nirt command being run by MGED.

Interactive Raytracing:
The nirt Command

17

MGED's Query Ray Control Panel with the Echo Cmd check box circled.

For example, with Echo Cmd selected, casting a ray into the last example in the previous section results in:

nirt -e fmt r ""; fmt h ""; fmt p ""; fmt m ""; fmt o ""; fmt f ""; fmt g "" -e fmt p
 "%e %e %e %e\n" x_in y_in z_in los -e xyz 4.000000 0.022222 0.011111;dir -1.000000
-0.000000 0.000000; s -e fmt r "\n" ; fmt p ""; fmt o "%e %e %e %e\n" ov_x_in ov_y_in
ov_z_in ov_los -e xyz 4.000000 0.022222 0.011111;dir -1.000000 -0.000000 0.000000; s
-e fmt r "\nOrigin (x y z) = (%.2f %.2f %.2f) (h v d) = (%.2f %.2f %.2f)\nDirection
(x y z) = (%.4f %.4f %.4f) (az el) = (%.2f %.2f)\n" x_orig y_orig z_orig h v d_orig
x_dir y_dir z_dir a e -e fmt h " Region Name Entry (x y z)
 LOS Obliq_in\n"; fmt p "%-20s (%9.3f %9.3f %9.3f) %8.2f %8.3f\n" reg_name x_in
y_in z_in los obliq_in; fmt f ""; fmt m "You missed the target\n"; fmt o "OVERLAP:
'%s' and '%s' xyz_in=(%g %g %g) los=%g\n" ov_reg1_name ov_reg2_name ov_x_in ov_y_in
ov_z_in ov_los; fmt g "" -e xyz 4.000000 0.022222 0.011111;dir -1.000000 -0.000000
0.000000; s -b nirt_example.g right_cube.r center_cube.r left_cube.r

Firing from (4.000000, 0.022222, 0.011111)...
Origin (x y z) = (10.63 0.02 0.01) (h v d) = (0.02 0.01 4.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.022 0.011) 2.00 0.000
center_cube.r (1.000 0.022 0.011) 2.00 0.000
left_cube.r (-1.000 0.022 0.011) 2.00 0.000

This feature is primarily useful for debugging or scripting outside of MGED.

Selecting Graphical and Textual Output

By default, NIRT in MGED outputs both graphical and text-based output. This is reflected in the drop-
down menu on the right side of the Effects row in the Query Ray Control Panel, which is set to Both. The
other options in the drop-down menu allow the user to specify only Graphics (no text report is printed)
or only Text (no ray path is drawn in the wireframe.)

Interactive Raytracing:
The nirt Command

18

MGED's Query Ray Control Panel with the Effects drop-down menu shown.

Reporting Options
Up until this point, only the default output configuration of NIRT has been used. Much of the power of
NIRT comes from taking that output and changing the format and information to supply precisely what
is needed for any given purpose.

How to Change the Reporting Format
The f option allows NIRT to load customized formatting files that change its reporting style. In addition to
the default style used thus far in this report, NIRT has several built-in options for convenient formatting.
Running nirt -L prints out a list of available built-in formats, with a description of each:

user@machine ~ $ nirt -L
csv-gap - Comma Separated Value Output Formatting with Gap Reporting
entryexit - Variation on Standard format that prints Entry and Exit points rather than LOS.
csv - Comma Separated Value Output Formatting
gap2 - Reporting with Gap input point, output point and LOS
gap1 - Reporting with Gap Input Point and LOS
default - Standard NIRT Reporting Format

To use a particular format, the name on the left (csv, gap1, etc.) is supplied as an argument to the f flag.

For example, cases where data needs to be imported into a spreadsheet can benefit from using comma-
separated-variable (csv) output formatting. The individual cube regions are loaded and a ray cast:

user@machine ~ $ nirt -b -f csv nirt_example.g left_cube.r center_cube.r right_cube.r
BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Objects 'left_cube.r' 'center_cube.r' 'right_cube.r' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Ray:

Interactive Raytracing:
The nirt Command

19

x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.000000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,o...
"right_cube.r","/right_cube.r",1002,3.000000,0.000000,0.000000,3.000000,1.000000,0.000...
"center_cube.r","/center_cube.r",1000,1.000000,0.000000,0.000000,1.000000,-1.000000,0....
"left_cube.r","/left_cube.r",1001,-1.000000,0.000000,0.000000,-1.000000,-3.000000,0.00...

The output of the shot command is then copied to a file (for example, test.csv) and imported into a
spreadsheet:

Since copying to a file is impractical in many cases, NIRT provides an interactive command called dest
which can specify an output file. In the previous case, the test.csv file is created easily:

nirt> dest test.csv
nirt> s

The file contents match the previous output:

Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.000000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,o...
"right_cube.r","/right_cube.r",1002,3.000000,0.000000,0.000000,3.000000,1.000000,0.000...
"center_cube.r","/center_cube.r",1000,1.000000,0.000000,0.000000,1.000000,-1.000000,0....
"left_cube.r","/left_cube.r",1001,-1.000000,0.000000,0.000000,-1.000000,-3.000000,0.00...

To restore output to the command line, use dest default to redirect to standard output:

nirt> dest default

When dealing with spaces between models, it is sometimes advantageous to report gaps in NIRT's output.
MGED's visualization routines show gaps between regions as purple lines, but the default text report does

Interactive Raytracing:
The nirt Command

20

not include information about gaps. Sometimes it is desirable to get exact information on gaps, particularly
when they represent errors in a model. The gap1 and gap2 formats will include information about gaps.
Running NIRT on the left_and_right_cubes.r object with backout enabled provides an example:

user@machine ~ $ nirt -b -f gap2 nirt_example.g left_and_right_cubes.r
BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Object 'left_and_right_cubes.r' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

Handling Attribute Reporting
The default command line reporting format lists an Attrib column where attributes may be printed, but
does not print any as default output. Including attributes in a NIRT report requires adding attributes in
question to the attributes table using the attr command. For example, if the user wants the report to identify
the rgb color being used for each region:

user@machine ~ $ nirt -b nirt_example.g left_cube_color.r center_cube_color.r right_cube_color.r
nirt> attr rgb
nirt> attr -p
"rgb"
nirt> s

Get trees...
Prepping the geometry...
Objects 'left_cube_color.r' 'center_cube_color.r' 'right_cube_color.r' processed
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255

Notice how the report now includes the rgb attribute for each region. The p flag prints the current list of
attributes to include. In the previous case it's simply the "rgb" attribute. An f option can be supplied to
flush all entries and clear the table.

nirt> attr -f
nirt> attr -p

Multiple attributes can also be specified:

nirt> attr rgb region
nirt> attr -p
"rgb"
"region"
nirt> s

Interactive Raytracing:
The nirt Command

21

Get trees...
Prepping the geometry...
Objects 'left_cube_color.r' 'center_cube_color.r' 'right_cube_color.r' processed
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0 region=R
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0 region=R
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255 region=R

If the user wishes to add yet another attribute, it could be appended to the current list with another attr
command.

To provide attributes to the list on startup, the A option will add its arguments to the list:

user@machine ~ $ nirt -b -A rgb nirt_example.g left_cube_color.r center_cube_color.r right_cube_color.r
BRL-CAD Release 7.13.0 Natalie's Interactive Ray Tracer
 Mon, 25 Aug 2008 15:14:03 -0400, Compilation 1
 user@localhost:/usr/brlcad
Database file: 'nirt_example.g'
Building the directory...
Get trees...
Prepping the geometry...
Objects 'left_cube_color.r' 'center_cube_color.r' 'right_cube_color.r' processed
Database title: 'Example BRL-CAD Database'
Database units: 'mm'
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000...
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255

Note

Reporting attributes when running NIRT from within MGED is more involved. This will be
covered later.

Changing Units
By default NIRT's interactive command line mode reads and writes all dimensions in millimeters,
regardless of the units set in the geometry file. This is configurable via the units command, which will
accept mm, cm, m, in, and ft as arguments or print the current unit with no arguments. Using center_cube.r
as an example:

nirt> units
units = 'mm'
nirt> s
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> units m
nirt> s
Origin (x y z) = (0.00346410 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (0.0010 0.0000 0.0000) 0.0020 0.0000
nirt> units in
nirt> s
Origin (x y z) = (0.13638195 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)

Interactive Raytracing:
The nirt Command

22

Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (0.0394 0.0000 0.0000) 0.0787 0.0000
nirt> units ft
nirt> s
Origin (x y z) = (0.01136516 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (0.0033 0.0000 0.0000) 0.0066 0.0000

When run from within MGED NIRT uses the current units set within the MGED environment.

Other Options

Silent and Verbose Modes

NIRT supports two behaviors associated with output verbosity. The interactive command line environment
uses the verbose mode by default. Verbose mode prints out the headers containing information about the
BRL-CAD version number, database name, database title, etc. and also provides the "nirt>" command
prompt label. Silent mode, used by default inside the MGED command window, does not print any headers
or prompt label.

When generating large numbers of results, it is sometimes desirable to switch to silent mode on the
command line. This is accomplished by supplying the s option to nirt. Similarly, in the MGED window,
supplying the v option will produce the full text output of NIRT's interactive mode in the MGED window.

Using Air Regions

Air regions have a special status in BRL-CAD, and by default NIRT does not report them. If the user does
wish to have air regions reported, the u option is supplied with an argument of 1 to activate air region
reporting. This is illustrated with a center_cube_air.r object:

user@machine $ nirt -s -b -u 0 -f gap2 nirt_example.g left_and_right_cubes.r center_cube_air.r
s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

user@machine $ nirt -s -b -u 1 -f gap2 nirt_example.g left_and_right_cubes.r center_cube_air.r
s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
center_cube_air.r (1.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

In the first case, area in between the cubes of left_and_right_cubes.r is reported as a gap when gap reporting
is enabled. In the second case, center_cube_air.r is treated as a region and a new region report line is
generated instead of a gap report.

The Query Ray Control Panel also offers a way to select the Use Air option:

Interactive Raytracing:
The nirt Command

23

MGED's Query Ray Control Panel showing the Use Air check box.

Reading an Orientation Matrix and Commands

This option is seldom used manually from the command line. Its primary purpose is to allow MGED's
saveview command to generate scripts that allow commands run on MGED views to be repeated on the
command line. By default the saveview MGED command generates scripts to run rt, so it is necessary
to specify nirt with saveview's e option; for example saveview -e nirt tsv.script. Typically the saveview
MGED command generates scripts with a few other options included, but the important parts are the
orientation matrix and eyepoint:

#!/bin/sh
nirt -M nirt_example.g 'right_cube.r' 'center_cube.r' 'left_cube.r' <<EOF
orientation 2.480973490458727e-01 4.765905732660485e-01 7.480973490458729e-01 \
 3.894348305183902e-01;
eye_pt 6.000000000000000e+00 4.201245229258262e+00 3.415539237722919e+00;

When the above script is run, a NIRT report is generated for a ray cast in the same direction as that which
would have been cast in the original MGED view where the saveview command was run:

machine:~ user$ sh tsv.script
Origin (x y z) = (6.00000000 4.20124523 3.41553924) (h v d) = (0.0000 0.0000 8.0819)
Direction (x y z) = (-0.74240388 -0.51983679 -0.42261826) (az el) = (35.00000000 25.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube.r (1.4281 1.0000 0.8130) 0.5767 58.6787
center_cube.r (1.0000 0.7002 0.5693) 2.6940 42.0634
left_cube.r (-1.0000 -0.7002 -0.5693) 0.5767 42.0634

Notice the az and el reported are 35 and 25, which correspond to the settings for those values in MGED
when saveview was run.

Interactive Raytracing:
The nirt Command

24

Scripting NIRT
As mentioned in the output formatting section, hand-copying NIRT output can be an inconvenient way to
store results, particularly in cases where large numbers of rays will be cast. In such cases, it is possible
to automate NIRT usage with scripting.

Command Line Scripts: The e Option

The most straightforward approach to supplying NIRT with a series of commands is to do so in a string from
the command line using the e option. The format of such a string is nirt -e "command1; command2; ...
commandn" model.g object. For example, to cast a ray in the negative z direction and avoid interactive
mode, the following would work:

user@machine ~ $ nirt -b -s -e "dir 0 0 -1; s; q" nirt_example.g all_cubes.r
Origin (x y z) = (0.00000000 0.00000000 6.63324958) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 -1.00000000) (az el) = (0.00000000 90.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
all_cubes.r (0.0000 0.0000 1.0000) 2.0000 0.0000

It's important to be aware that the order of e and f options matters. They are read in from left to right and each
option is aware of the effects of the previous options. Using the gap format with the left_and_right_cubes.r
object, both orders of the e and f options produce different results:

user@machine ~ $ nirt -b -s -f gap2 -e "s; q" nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

user@machine ~ $ nirt -b -s -e "s; q" -f gap2 nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

In the second case, the arguments to e were executed before the formatting change was reached. A final
illustration of this behavior uses multiple instances of the e and f options:

user@machine ~ $ nirt -b -s -e "s" -f gap2 -e "s; q" nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

Notice how the commands in the first e option are run without the gap formatting, but the command in
the second is run with gap formatting.

Interactive Raytracing:
The nirt Command

25

Script Files: Other Uses of the f Option
Earlier, the f option was used to change the output formatting of NIRT. This is only one instance of
using scripted commands in files to control NIRT. The same principles apply for any command normally
available during an interactive NIRT session.

Instead of hand-copying the output to a file as was done in the previous example using tire.g, a more
ambitious goal is to output the results of several different ray casts to a single file without manual copying.
A script file is defined thus:

testscript: A Scripted NIRT Example
backout 1
dir -1 0 0
s
dir 1 0 0
s
q

Because the intent is to have only the output in the file, the s option is supplied to the nirt command. The
output is redirected to a file called output.txt4

nirt -s -f testscript nirt_example.g left_and_right_cubes.r > output.txt

The contents of that file are the text reports of the two rays cast into the model:

Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (-0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
Origin (x y z) = (-6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (1.00000000 0.00000000 0.00000000) (az el) = (-180.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (1.0000 0.0000 0.0000) 2.0000 0.0000

This is useful, but more interesting would be the above output in csv format. Fortunately, the f option can
be used multiple times in a single nirt run:

nirt -s -f csv -f testscript nirt_example.g left_and_right_cubes.r > output.csv

As mentioned in the earlier section when combinations of e and f options were used, using multiple
instances of the f option in this fashion requires paying attention to the left-to-right order. The csv script
in the above case is executed before testscript. The result is the csv equivalent of the preceding file:

Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.00000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,...
"left_and_right_cubes.r","/left_and_right_cubes.r",1004,3.000000,0.000000,0.000000,3....
"left_and_right_cubes.r","/left_and_right_cubes.r",1004,-1.000000,0.000000,0.000000,-...

Ray:

4These examples use a standard POSIX-style output redirect to create the file. If this doesn't work, the above script can be edited to use the dest
command instead.

Interactive Raytracing:
The nirt Command

26

x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
-6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,1.00000000,0.00000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,...
"left_and_right_cubes.r","/left_and_right_cubes.r",1004,-3.000000,0.000000,0.000000,3...
"left_and_right_cubes.r","/left_and_right_cubes.r",1004,1.000000,0.000000,0.000000,-1...

As before, this format is trivially imported into a spreadsheet:

Defining a Custom Reporting Format
A final example of the use of the scripting mechanism is constructing a custom-tailored report format and
specifying it using the f option. In the case of a custom file stored in a user directory, the full file name
needs to be supplied just like any other script, e.g., nirt -f my_report_format.nrt model.g item.

Generally, it is simplest to use one of the predefined files as a starting point. For example, if the user prefers
to have commas between xyz coordinates, but otherwise wishes to use the default format, the default.nrt
file from the installed BRL-CAD system is copied to the local directory and renamed default-commas.nrt:

machine:~ user$ cp /usr/brlcad/share/brlcad/7.12.5/nirt/default.nrt default-commas.nrt

machine:~ user$ more default-commas.nrt
default.nrt
Description: default - Standard NIRT Reporting Format
fmt r "Origin (x y z) = (%.8f %.8f %.8f) (h v d) = (%.4f %.4f %.4f)\nDirection (x y z)...
fmt h " Region Name Entry (x y z) LOS Obliq_in Attrib\n"
fmt p "%-20s (%9.4f %9.4f %9.4f) %8.4f %8.4f %s\n" reg_name x_in y_in z_in los obliq_in...
fmt m "You missed the target\n"
fmt o "OVERLAP: '%s' and '%s' xyz_in=(%g %g %g) los=%g\n" ov_reg1_name ov_reg2_name ov_...

Next, the file is edited to replace all of the spaces in the point strings with commas:

Interactive Raytracing:
The nirt Command

27

machine:~ user$ more default-commas.nrt
fmt r "Origin (x,y,z) = (%.8f,%.8f,%.8f) (h,v,d) = (%.4f,%.4f,%.4f)\nDirection (x,y,z...
fmt h " Region Name Entry (x,y,z) LOS Obliq_in Attrib\n"
fmt p "%-20s (%9.4f,%9.4f,%9.4f) %8.4f %8.4f %s\n" reg_name x_in y_in z_in los obliq_i...
fmt f ""
fmt m "You missed the target\n"
fmt o "OVERLAP: '%s' and '%s' xyz_in=(%g,%g,%g) los=%g\n" ov_reg1_name ov_reg2_name ov...
fmt g ""

Running the center_cube.r object:

machine:~ user$ nirt -s -b -f default-commas.nrt nirt_example.g center_cube.r
s
Origin (x,y,z) = (3.46410162,0.00000000,0.00000000) (h,v,d) = (0.0000,0.0000,0.0000)
Direction (x,y,z) = (-1.00000000,0.00000000,0.00000000) (az,el) = (0.00000000,0.00000000)
 Region Name Entry (x,y,z) LOS Obliq_in Attrib
center_cube.r (1.0000, 0.0000, 0.0000) 2.0000 0.0000

Notice the commas now present between points. This file can be saved and reused on any NIRT task.

Note

If a user wishes to save the current session configuration of an interactive command line NIRT
session at any time, they can always use the dump interactive command to print out a script file
that contains all the relevant commands required to restore a specific configuration. By default
this file is called nirt_state. The statefile interactive command is used to change that name if
desired. If a user has used in-session commands to alter formatting, but wants to preserve them
for later use or as a starting point for a new report format, the output of dump is an excellent
starting point.

Customizing Report Output in MGED
The Query Ray Control Panel discussed earlier also provides access to the reporting logic used by MGED
when calling NIRT, but it does not provide any graphical aid when it comes to laying out the formatting.
All layout logic must be defined with the same syntax already seen for the script files. Customizations
of this logic in MGED are done using the Advanced option in the lower right corner of the Query Ray
Control Panel, which brings up the following window:

MGED's Query Ray Control Panel Advanced Settings dialog box.

Note also the last line of this dialog box, which provides a place for script commands to be executed before
the internal s command is run. It functions just like the -e option on the normal command line, including

Interactive Raytracing:
The nirt Command

28

the syntax of separating all commands except the last one with semicolons. This is useful for setup not
possible in normal command line operation, as illustrated in the next section.

Reporting Attributes in MGED: Advanced Formatting
and Scripting

As mentioned earlier, reporting attributes with NIRT inside of MGED is more involved than the strictly
command line interface allows. In default NIRT reporting inside MGED, the attributes column is not even
listed. Attributes can be reported with NIRT in MGED, but it requires custom formatting and scripting.

The first step is to open the Query Ray Advanced Settings dialog box shown in the previous section.
Examining the default NIRT formatting file used on the command line reveals that the partition formatting
string needs a %s variable added and the attributes variable in position to be supplied to the %s. Also
the Attrib column header is added to Head.

Query Ray Advanced Settings dialog box showing changes to values (white highlight).

The second step is to use the Script line in this dialog box to add rgb to the attributes list. Because the
script line is run before MGED sends the s command, the attributes list will be updated by the time the
ray is cast and the subsequent report is generated.

Adding commands to the Script line in the Advanced Settings dialog.

Unless graphical visualization is needed, it is probably simpler to work from the NIRT interactive
command line in cases where a lot of adjustment of attribute reporting is needed. If MGED is needed,
however, this technique will allow custom reports inside of MGED that include attributes.

Interactive Raytracing:
The nirt Command

29

Available Information for Inclusion in Reports
There are many cases where the user may want to change what NIRT is reporting, instead of or in addition
to the formatting of the reports. NIRT internally defines values that it supports as output options, most of
which are not reported in the default format for the sake of brevity and clarity. It also defines "events"
corresponding to various model geometric states encountered by the ray, which are used to trigger print
events:

Event Description

r Ray. A ray is cast. The formatting associated with r
will print regardless of whether a region is encountered.

h Header. First output after a ray hits anything.
Formatting at h is output once per ray.

p Partition. Output for each region encountered by the ray. Typically
this will be where most of the information about a model is reported.

f Footnote. Last output statement after a ray hits anything; a "footnote"
line after the ray has completed its evaluations; once per ray.

g Gap. Output written once for each gap the ray may encounter.

m Miss. If triggered, prints a message that
nothing was hit; maximum once per ray.

o Overlap. Output written once for each overlap along the ray.

The available variables pertain to the ray, partitions, overlaps, and gaps. Other event options typically
use only labeling strings. The variables are listed in Appendix A and can be used to change reported
information. The csv output format is one example of such use.

Summary
• NIRT is the standard, interactive ray trace query tool used for obtaining precise, detailed information

about specific areas of a model via individual ray queries.

• NIRT offers a wide variety of formatting options for various analysis needs as well as support for custom
formats.

• Running NIRT within MGED offers additional graphical feedback not available when run outside of
MGED.

• NIRT provides both command-line and file-based scripting to allow for powerful, automated, custom
analyses.

The author would like to thank Bob Parker, John Anderson, Janine Gettier, and Christopher Sean Morrison
for their time and help with explaining some of the more subtle concepts encountered by the author during
the creation of this report.

A. Report Format Variable Listings
Ray Variables

Interactive Raytracing:
The nirt Command

30

x_orig x coordinate of ray origination point.

y_orig y coordinate of ray origination point.

z_orig z coordinate of ray origination point.

d_orig d coordinate of ray origination point.

h h coordinate for the entire ray.

v v coordinate for the entire ray.

x_dir x component of direction vector.

y_dir y component of direction vector.

z_dir z component of direction vector.

a azimuth of view (i.e., of ray direction).

e elevation of view (i.e., of ray direction).

Partition Variables

attributes A string variable consisting of the names and
values of the attributes requested by the attr

interactive command or the -A command line option.

x_in x coordinate of entry into current region.

y_in y coordinate of entry into current region.

z_in z coordinate of entry into current region.

d_in d coordinate of entry into current region.

x_out x coordinate of exit from current region.

y_out y coordinate of exit from current region.

z_out z coordinate of exit from current region.

d_out d coordinate of exit from current region.

los line-of-sight distance through current region.

scaled_los scaled line of sight: product of line-of-sight distance through current
region and region soliditya (sometimes called ``percent LOS'').

path_name full path name of current region.

reg_name name of current region

reg_id region ID of current region.

claimant_count number of regions claiming this partition
(that is, participating in a retained overlap).

claimant_list space-separated list of names of regions claiming this
partition (that is, participating in a retained overlap).

claimant_listn Same as claimant_list, except that it is
newline-, rather than space-separated.

obliq_in entry obliquity for current region.

obliq_out exit obliquity for current region.

nm_x_in x component of entry normal vector

nm_y_in y component of entry normal vector

nm_z_in z component of entry normal vector

Interactive Raytracing:
The nirt Command

31

nm_h_in h component of entry normal vector

nm_v_in v component of entry normal vector

nm_d_in d component of entry normal vector

nm_x_out x component of exit normal vector

nm_y_out y component of exit normal vector

nm_z_out z component of exit normal vector

nm_h_out h component of exit normal vector

nm_v_out v component of exit normal vector

nm_d_out d component of exit normal vector

surf_num_in entry-surface ID of entry solid.

surf_num_out exit-surface ID of exit solid.
a Region solidity refers to a thickness equivalence factor often used to simulate material properties like density.

Overlap Variables

ov_reg1_name name of one of the overlapping regions.

ov_reg2_name name of the other overlapping region.

ov_reg1_id region ID of one of the overlapping regions.

ov_reg2_id region ID of the other overlapping region.

ov_sol_in name of one of the overlapping solids.

ov_sol_out name of the other overlapping solid.

ov_los line-of-sight distance through the overlap.

ov_x_in x coordinate of entry into overlap.

ov_y_in y coordinate of entry into overlap.

ov_z_in z coordinate of entry into overlap.

ov_d_in d coordinate of entry into overlap.

ov_x_out x coordinate of exit from overlap.

ov_y_out y coordinate of exit from overlap.

ov_z_out z coordinate of exit from overlap.

ov_d_out d coordinate of exit from overlap.

Gap Variables

x_gap_in x coordinate of entry into gap.

y_gap_in y coordinate of entry into gap.

z_gap_in z coordinate of entry into gap.

gap_los line-of-sight distance through gap.

B. Debugging Options
In cases where problems are being encountered, it is possible to use debugging options to print additional
information related to the raytracing process. NIRT exposes two levels of debugging: the core raytracing
library and NIRT itself.

Interactive Raytracing:
The nirt Command

32

librt Debugging Information
In cases where detailed behavior of the core raytracing routines is of interest, it is possible to use the x
(lower case "x") option to print additional diagnostic messages.1 See the librt header files for more detail
about the very extensive debugging options provided.

machine:~ user$ nirt -s -b -x 0x002 -e "s; q" nirt_example.g center_cube.r

 **********shootray cpu=0 0,0 lvl=0 a_onehit=0 (NIRT ray)
 Pnt (3.4641016151377543864, 0, 0)
 Dir (-1, 0, 0)
 ------Partition list passed to a_hit() routine
 00604d50: PT center_cube.s (ARB8#0) center_cube.s (ARB8#0) (2.4641,4.4641)
 InHIT dist=2.4641 (surf 5)
 OutHIT dist=4.4641 (surf 4)
 Primitives: center_cube.s,
 Untrimmed Segments spanning this interval:
 0680d600: SEG center_cube.s (2.4641,4.4641) st_bit=0 xray#=0
 Region: /center_cube.r

Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
----------shootray cpu=0 0,0 lvl=0 (NIRT ray) HIT ret=1

NIRT Debugging Information
NIRT itself also provides debugging information. It is accessed using the X option.2 NIRT provides five
different debug flags, as seen in nirt.h:

/** FLAG VALUES FOR nirt_debug */
#define DEBUG_INTERACT 0x001
#define DEBUG_SCRIPTS 0x002
#define DEBUG_MAT 0x004
#define DEBUG_BACKOUT 0x008
#define DEBUG_HITS 0x010

0x001 and 0x002 pertain to interaction and scripts, respectively:

machine:~ user$ nirt -s -b -X 0x001 -e "s; q" nirt_example.g center_cube.r
interact(READING_STRING, 603c10)...
sgetc((null)) '(null)' '(null)'... initializing
sgetc(s; q) '(null)' '(null)'... initializing
returning 's' (o163)
line_buffer[0] = 's' (o163)
sgetc(s; q) 's; q' '; q'... returning ';' (o73)
Line buffer contains 's'
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
sgetc(s; q) 's; q' ' q'... returning ' ' (o40)
Skipping ' '
sgetc(s; q) 's; q' 'q'... returning 'q' (o161)
line_buffer[0] = 'q' (o161)
sgetc(s; q) 's; q' ''... returning EOS
Line buffer contains 'q'

1librt's diagnostic setting can also be set in the interactive environment with the libdebug command.
2The nirt level diagnostics can be set in the interactive environment with the debug command.

Interactive Raytracing:
The nirt Command

33

machine:~ user$ nirt -s -b -X 0x002 -e "s; q" nirt_example.g center_cube.r
interact(READING_STRING, 603c10)...
sgetc((null)) '(null)' '(null)'... initializing
sgetc(s; q) '(null)' '(null)'... initializing
returning 's' (o163)
line_buffer[0] = 's' (o163)
sgetc(s; q) 's; q' '; q'... returning ';' (o73)
Line buffer contains 's'
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
sgetc(s; q) 's; q' ' q'... returning ' ' (o40)
Skipping ' '
sgetc(s; q) 's; q' 'q'... returning 'q' (o161)
line_buffer[0] = 'q' (o161)
sgetc(s; q) 's; q' ''... returning EOS
Line buffer contains 'q'
user@localhost $ nirt -s -b -X 0x002 -e "s; q" nirt_example.g center_cube.r
- - - - - - - The command-line scripts - - - - - - -
1. script string 's; q'
- -
- - - - - - - The command-line scripts - - - - - - -
1. script string 's; q'
- -
 Attempting to run literal 's; q'
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

The 0x004 DEBUG_MAT flag pertains to the M option seen earlier in the saveview MGED command
example that supplies a matrix for NIRT to read. Adding the debug option to the script triggers a printout
of the matrix:

#!/bin/sh
nirt -M -X 0x004 nirt_example.g center_cube.r <<EOF
orientation 5.000000000000000e-01 5.000000000000001e-01 5.000000000000000e-01 4.999999999999999e-01;
eye_pt 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00;

machine:~ user$ sh tsv.script
MATRIX view matrix:
 -0.000 1.000 0.000 0.000
 0.000 0.000 1.000 0.000
 1.000 0.000 -0.000 0.000
 0.000 0.000 0.000 1.000
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 -0.00000000 0.00000000) (az el) = (0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 -0.0000) 2.0000 0.0000

DEBUG_BACKOUT and DEBUG_HITS pertain to the backout option and geometry hits:

machine:~ user$ nirt -s -b -X 0x008 -e "s; q" nirt_example.g center_cube.r
Backing out 3.4641 units to (3.4641 0 0), shooting dir is (-1 0 0)
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

machine:~ user$ nirt -s -b -X 0x010 -e "s; q" nirt_example.g center_cube.r
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib

Interactive Raytracing:
The nirt Command

34

Partition 1 entry: (1, 0, 0) exit: (-1, 0, 0)
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

