

BRL-CAD Tutorial Series:

Volume III – Principles of Effective Modeling

by Lee A. Butler, Eric W. Edwards, and Dwayne L. Kregel

ARL-SR-119 September 2003

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Note that the name BRL-CAD and the BRL-CAD eagle logo are trademarks of the U.S. Army.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-SR-119 September 2003

BRL-CAD Tutorial Series:
Volume III – Principles of Effective Modeling

Lee A. Butler

Survivability/Lethality Analysis Directorate, ARL

Eric W. Edwards and Dwayne L. Kregel
SURVICE Engineering Company

Approved for public release; distribution is unlimited.

 ii

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

September 2003
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

April 2002–April 2003
5a. CONTRACT NUMBER

DAAD17-03-D-001
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

BRL-CAD Tutorial Series: Volume III – Principles of Effective Modeling

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Lee A. Butler, Eric W. Edwards,* and Dwayne L. Kregel*

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-SL-BE
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-SR-119

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
13. SUPPLEMENTARY NOTES

*Employed by the SURVICE Engineering Company, Belcamp, MD.
14. ABSTRACT

Since 1979, the U.S. Army Research Laboratory has been developing and distributing the BRL-CAD constructive solid
geometry (CSG) modeling package for a wide range of military and industrial applications. The package includes a large
collection of tools and utilities, including an interactive geometry editor, raytracing and generic framebuffer libraries, network-
distributed image-processing and signal-processing capabilities, and an embedded scripting language.

As part of this effort, a multivolume tutorial series is being developed to assist users in the many features of the BRL-CAD
package. “Principles of Effective Modeling,” which is the third volume in the series, addresses the modeling process and
suggests principles and techniques for maximizing BRL-CAD’s capabilities. Other volumes focus on package installation and
specific features and utilities within the software package.

15. SUBJECT TERMS

BRL-CAD, computer-assisted design, modeling and simulation, solid modeling, constructive solid geometry (CSG), computer
graphics, geometric target description

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Eric W. Edwards

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

84

19b. TELEPHONE NUMBER (Include area code)
410-278-4877

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables v

Acknowledgments vi

1. Introduction 1

2. The Model Process 1
2.1 The Importance of the Model Mission ..1

2.2 M-O-D-E-L: A Five-Step Approach to Creating Effective Models...............................3

3. Measuring Data 5

4. Organizing the Structure 8

5. Developing Geometry 13

6. Evaluating Geometry 29

7. Logging Documentation 34

8. References 37

Appendix A: Using the Pipe Primitive 39

Appendix B: Using the Projection Shader 47

Appendix C: Using the Extruded Bitmap Primitive 55

Appendix D: Setting Up a .mgedrc File 57

Appendix E: Using the Build Pattern Tool 63

Appendix F: Using the build_region Command 71

 iv

List of Figures

Figure 1. Ballistic penetration model with transparent exterior. ..2
Figure 2. External detail commonly used in radar signature models..3
Figure 3. M-O-D-E-L: the five-stage modeling process..4
Figure 4. Location-based structure of the radio in Volume II. ...12
Figure 5. Function-based structure of the radio in Volume II. ...12
Figure 6. Coordinate axes of a turreted ground vehicle..18
Figure 7. Coordinate axes of a nonturreted ground vehicle..18
Figure 8. Coordinate axes of a fixed-wing aircraft. ..18
Figure 9. Coordinate axes of a rotary-wing aircraft..19
Figure 10. Building multiple occurrences through replication. ..20
Figure 11. Building multiple occurrences through referencing. ...20
Figure 12. Target geometry...23
Figure 13. Example of an Overly Large Bounding Primitive...23
Figure 14. Example of a compact bounding primitive. ..23
Figure 15. Example of grouping objects for articulation..24
Figure 16. Sample Boolean operations. ..25
Figure 17. Properly (top) and improperly (bottom) ordered regions. ...27
Figure 18. Shotline through a tank..30
Figure 19. Example of overlaps in the graphics window..32
Figure 20. Example of an overlap report in the command window..32
Figure A-1. Basic pipe with parameters. ..40
Figure A-2. Various bend radii. ..40
Figure A-3. Example of special uses of the pipe. ...41
Figure A-4. Determining the point positions for the copper coil..42
Figure A-5. Raytraced coil segment. ..45
Figure B-1. The many components of a circuit board. ...47
Figure B-2. Using the Raytrace Control Panel to size the graphics window................................49
Figure B-3. Fitting the geometry view to the image dimensions..51
Figure B-4. Applying the shader settings with the combination editor.52
Figure B-5. Original image (left) and image with circular cutouts (right).52
Figure B-6. The projection shader applied to the front of the circuit board.53

 v

Figure B-7. The circuit board .prj file...54
Figure C-1. Example of the .bw image used for ebm ...55
Figure C-2. Example of ebm...55
Figure C-3. Example of the ebm with projection shader added. ..55
Figure D-1. The two basic parts of the .mgedrc file: (1) information before header, and

(2) information after header. ..58
Figure D-2. Sample elements and functionality of a .mgedrc file. ...60
Figure D-3. Sample window dimension input and positioning. ...61
Figure E-1. Example of pattern-generated assembly names...64
Figure E-2. The user interface for building rectangular patterns..66
Figure E-3. The user interface for building spherical patterns. ..67
Figure E-4. Examples of different spherical pattern orientations. ..68
Figure E-5. Implementation of spherical patterns...69
Figure E-6. The user interface for building cylindrical patterns...70
Figure F-1. The rounded corners of a toy wagon..71
Figure F-2. Arb8, cylinder, and two Boolean primitives..72
Figure F-3. The region and the subtraction primitives. ..73
Figure F-4. Raytraced image with hole...73

List of Tables

Table 1. Various modeling data sources. ..5
Table 2. Commonly used measurement symbols and abbreviations. ...8
Table 3. Examples of naming conventions. ..10
Table 4. The four modeling levels in BRL-CAD. ..14
Table 5. The major BRL-CAD primitives and parameters...15
Table 6. Various ways to build primitives. ...17
Table 7. Advantages and disadvantages of replication vs. referencing.20
Table 8. Traditionally used MGED colors..28
Table 9. Commonly used system-color codes. ...29

 vi

Acknowledgments

The authors would like to acknowledge Mr. John Anderson, Mr. Sean Morrison, Mr. Keith
Applin, Mr. Charles Kennedy, Ms. TraNese Christy, and Ms. Wendy Winner for reviewing this
document at various stages in its development and for providing many helpful suggestions for
improving its content and presentation.

In addition, the following individuals and organizations are thanked for contributing various
tables and figures throughout the report. They include Ms. Wendy Winner, Mr. Michael Gillich,
Dr. Paul Tanenbaum, the Aberdeen office of the Science Applications International Corporation
(SAIC), and the SURVICE Engineering Company.

Finally, the authors would especially like to acknowledge Mr. Michael Muuss, the original
architect of BRL-CAD, who passed away in the fall of 2000. Without his vision, intellect, and
diligence, this work would not have been possible. The BRL-CAD Tutorial Series is dedicated
to his memory.

 vii

Supplementary Tutorial Boxes
Note that tutorial boxes have been used throughout
this document to supplement the information
presented in text. Each of these boxes is designated
by a graduation hat icon.

 viii

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

Since 1979, the U.S. Army Research Laboratory (ARL) has been developing and distributing the
U.S. Army Ballistic Research Laboratory - Computer-Aided Design (BRL-CAD) constructive
solid geometry (CSG) modeling package for a wide range of military and industrial applications.
The package includes a large collection of tools and utilities including an interactive geometry
editor, raytracing and generic framebuffer libraries, network-distributed image-
processing/signal-processing capabilities, and an embedded scripting language.

As part of this effort, a multivolume tutorial series is under development to assist users with the
many features of the BRL-CAD package. Volume I provides an overview of the package
contents and installation (Butler and Edwards, 2002). Volume II addresses the basic features and
functionality of the package’s Multi-Device Geometry Editor (MGED) and offers a
comprehensive list of the user commands available (Butler et al., 2001). These documents are
available for download at <http://ftp.arl.army.mil/brlcad/> (U.S. ARL, 2003).

The purpose of Volume III is to discuss the components of the modeling process and suggest
principles for maximizing the effectiveness of BRL-CAD’s capabilities. Because of the large
diversity in modeling projects, these principles have largely been kept to a general nature so that
they have the widest applicability possible. In addition, several appendices have been included
to offer detailed discussions on several BRL-CAD tools and features, including the pipe
primitive (Appendix A), the projection shader (Appendix B), the extruded bitmap primitive
(Appendix C), the .mgedrc file (Appendix D), the Build Pattern tool (Appendix E), and the
build_region command (Appendix F).

Future volumes in the tutorial series are planned to discuss geometry format conversion,
advanced modeling features, and programming options.

2. The Model Process

2.1 The Importance of the Model Mission

The key to knowing how to build successful, effective models in BRL-CAD is to know why you
are building them. Thus, before any measurements are taken, before any structures are laid out,
and before any geometry is built, the modeler should, if possible, meet with program sponsors,
participants, and/or end users to gain a clear understanding of the model’s intended purpose—
that is, its mission.

 2

Whether a model is intended for ballistic analyses, radar studies, or something else, the model’s
mission should be the basis for determining how all parts of the modeling process should be
conducted. This includes the level of detail that the modeler should achieve, the tree structure
the model should have, the amount of modeling time that should be allotted, the types of
validation and verification the model should have, and even the way documentation should be
created and logged. This point may seem obvious, but failure to acknowledge the mission can
result in wasted time and resources and, ultimately, an ineffective model.

For example, if one is creating a geometric target description of a combat vehicle to simulate a
ballistic penetration event, accurately modeled material thicknesses and densities of outside
armor are crucial in analyzing penetration damage. In addition, it is usually important to include
internal components such as fuel and electrical lines, ammunition, and even crew members,
which can greatly affect the vehicle’s functionality if they are impacted by a projectile (see
Figure 1).

Radar signature studies, on the other hand, often call for a different type of model. For the most
part, the vehicle’s outer shell—or “skin”—is what is important, and the previously mentioned
armor thicknesses and internal components are usually unnecessary (see Figure 2).

Figure 1. Ballistic penetration model with transparent exterior.

Ammunition
Crew

Note continuous
track. Individual
track links are
often not modeled
for ballistic
studies.

 3

Figure 2. External detail commonly used in radar signature models.

It is also important to note that some models will need to serve multiple missions. If the modeler
suspects that this will be the case with a model, it should be built to the highest level of detail
that any of the intended users requires (and, of course, that time/resources permit).

2.2 M-O-D-E-L: A Five-Step Approach to Creating Effective Models

After one has explicitly and unequivocally established the “why” of a model, the “how” of a
model can be addressed. Unfortunately, there is no single, universally accepted method to
creating models in BRL-CAD. In fact, professional modelers are known to employ many unique
techniques to accomplish equivalent results. Nonetheless, there are several basic steps or
procedures that are commonly used by most modelers to create accurate, realistic, and useful
geometric representations in a timely and efficient manner. These steps could be described in a
variety of ways, but for convenience, they can be generalized into the following five categories
and represented by the acronym M-O-D-E-L:

1. M-easuring (or collecting/converting) data,

2. O-rganizing the structure,

3. D-eveloping (or building) geometry,

4. E-valuating (or checking) geometry for correctness, and

5. L-ogging (or creating) documentation.

The remaining sections of this document address each of these steps in turn.

Note individual
track links. “Skin”
detail is important
for radar studies;
subsurface detail is
often unnecessary.

 4

As shown in Figure 3, the modeling process can be thought of as a wagon wheel with five
spokes. Each spoke extends out from the inner hub—the model’s mission—and is equally
important in giving the wheel its strength and functionality. Also, although it is common to
consider the steps in the order in which they are listed (i.e., M then O then D then E then L), the
modeling process is dynamic, and it is not unusual for a particular phase to occur in a different
order, to repeat itself, or to be skipped altogether as a project develops.

Figure 3. M-O-D-E-L: the five-stage modeling process.

For example, the organization phase is often the first step in large or complex modeling projects
because it helps the modeler establish a tree structure that will guide him in collecting/measuring
the right (or right amount of) data. Also, the modeler often detects missing or inaccurate data in
the geometry development phase, which requires a return to the measurement phase. Finally, in
cases involving the conversion of geometry from another source, the measurement and
development phases might be nonapplicable, and a modeler might skip directly to the evaluation
phase.

L

Develop

Lo
g

Evaluate

O
rganize

Measure
MISSION

O

M

E

D

 5

3. Measuring Data

Unless a modeler is creating a conceptually new geometry, he must work from a variety of
information sources to build a model. In some cases, blueprints or mechanical drawings exist.
In others, a trip to the field is required to physically measure objects and orientations. In still
others, geometry exists in another CAD format and needs to be converted to BRL-CAD format.
As shown in Table 1, each type of measurement source has its own set of advantages and
disadvantages, depending on the modeler’s and/or user’s point of view.

Table 1. Various modeling data sources.

Data Source Advantages Disadvantages
Blueprints/

schematics/mechanical
drawings/photographs

Can save time/resources by
providing precise measurements
with minimal data collection
effort. Can also suggest ways to
structure the model (e.g., by
providing wiring diagrams,
subsystem schematics, etc.).

Can sometimes be difficult to read. Do
not always show all needed measurements
or views. Are not always consistent with
the actual objects they represent (e.g.,
design changes sometimes occur during
development or manufacturing).

Measurable objects

Can arguably provide the best
source of verifiable information
by providing hands-on access to
the actual objects being
modeled.

Can be resource and labor intensive and
can be limited by the objects’ availability,
accessibility, and measurability, resulting
in missed measurements.

Converted geometry

Can offer significant savings in
data collection and/or
measurement efforts.

Can have missing data, unfamiliar naming
schemes, and alternate/dissimilar
geometry formats (e.g., feature-based
objects, splines, etc.). Can also be
unsuitable for a given application because
the original model was developed for a
different purpose.

Regardless of the type information source used, there are several simple keys to obtaining data.
These keys often require a little extra time and effort in the early stages of the modeling process,
but they can save significantly more time and effort later on (especially if multiple modelers are
involved in the project). Several of these keys are identified as follows:

1. Leverage all sources available: Although one of the previously mentioned sources may
be the primary one from which a modeler will work, all available photographs, drawings,
converted geometry, etc., should be used together to spot-check and verify the information
given. Sometimes schematics are mislabeled, mistakes are made while measuring, or
geometry from other CAD packages does not convert properly. The only way to catch
some of these errors is to compare them against another source.

 6

2. Get information while it is available: With the many data points involved in building
complex geometry, it is not uncommon to find during geometry development that not all
required information was obtained during the data measurement/collection phase.
Important components and/or dimensions can be overlooked, and it may be inconvenient or
impossible (e.g., with a combat vehicle) to recollect, remeasure, or reconvert what is
missing. Thus, a modeler should be as thorough as possible when obtaining data. Even if
it is not clear whether a piece of geometry or measurement will be required, it can always
be discarded later if not needed. Also, in the spirit of the carpenter’s maxim, it is a good
idea to “measure twice and cut once” and double-check measured or converted geometry
before it is placed in a model.

3. Get total lengths and total views: Modelers sometimes take relative measurements of
objects across a face without measuring the entire length/width of the face. Unfortunately,
at the end, the measurements do not always add up. It is much easier to “back out” missed
or inaccurate measurements given total lengths/widths. Likewise, when photographing
portions of a bigger object (e.g., a radiator on a truck), it is a good idea to also capture
several “bird’s eye” views of encompassing objects (e.g., the engine compartment or the
entire truck) to help establish overall reference points.

For a series of uniformly spaced objects, it is good practice to measure the
total length of the series and divide by the number of objects. This helps
spread out any inaccuracies along the span and prevents them from
accumulating at the last object. For example, in a row of 20 bolts at 50-mm
intervals, a measurement error of just 2 mm between bolts could result in the
last bolt being nearly 40 mm out of position.

4. Record measurements as clearly and consistently as possible: It is interesting how a

“scribble” that is perfectly understandable to the measurement-taker who is still in front of
the object can become indecipherable when it is later viewed back in the office (when the
object is no longer accessible). Furthermore, despite the best laid plans, projects and
personnel can change in midstream, and the person(s) taking measurements may wind up
having little or no connection to the person(s) actually interpreting those measurements and
building the model. Therefore, all drawings and notations should be sufficiently clear and
consistent so that someone unfamiliar with the object could understand and work with the
recorded measurements. A few recommendations are given as follows:

a. Include meaningful titles on drawings: Detailed drawings and data can be of little
value if it is unclear what the overall geometry/view is and how the designated piece
ties into the completed model.

b. In general, orient drawings in orthogonal views: This practice eliminates potential
problems associated with perspective and makes drawings easier to read and use. If

 7

other angles are desired (and it is not a bad idea to include at least one off-angle view
with a few measurements to help confirm reference points), be sure to include
azimuth/elevation and information about the orientation relative to the eye point and to
the actual vehicle coordinate system. In addition, note any atypical configurations and
orientations (e.g., a tank turret rotated in an unusual fashion to allow access to certain
components).

c. Include offsets from other objects: Although these measurements may not actually
be primary data (i.e., required inputs for MGED commands), they may help the
modeler resolve problems or derive other measurements needed later. For example,
when modeling a field of objects on a flat surface (e.g., gauges and buttons on an
instrument panel), it is good practice not only to collect the distances of the objects
from, say, the edges of the panel but also the distances relative to other objects. This
information can be valuable when trying to troubleshoot overlaps or other problems
encountered during the evaluation phase.

d. Clearly record small details and symbols: When recording measurements, it is
important to remember that even small details (such as arrows, edges, centers,
thicknesses, numbers, and units) can lead to possible confusion. Arrows too long or too
short can be mistaken for pointing to a shape’s edge instead of its center, hastily written
numbers can be mistaken for other numbers (e.g., “1” vs. “7”),* unidentified inner
diameters can be confused with outer diameters, unidentified units can be assumed to
be other units, etc. Table 2 lists some standard symbols and abbreviations that are
commonly used when recording measurements.

*In fields where hand-written numbers are heavily used, the traditional convention to avoid confusion with the number “1” is to write the

number “7” with a line through it (i.e., “7”).

 8

Table 2. Commonly used measurement symbols and
abbreviations.

Symbol Meaning
R Radius

∅ or D Diameter
I.D. Inner diameter
O.D. Outer diameter

Center

 Centerline
∠ Angle
 Arc

↔ or → ← Distance between two edges
 Distance between two points

Distance between two centers

|| Parallel
⊥ Perpendicular

∩ or × Intersectiona
∪ Uniona

aIntersection and union symbols presented here should not be
confused with the intersection (+) and union (u) symbols used to
represent and execute Boolean operations in BRL-CAD.

4. Organizing the Structure

Taking the time to map out a tree structure of an object before building it is another important
step in the modeling process, especially if the object being constructed is elaborate, if modeling
time and resources are limited, if the work is being performed as a team, or if the model will be
passed on to someone else later.

If we consider the construction of a house, we know that builders do not actually build houses;
they build pieces of a house until the completed structure emerges. Furthermore, these pieces are
not usually built in a random order. Rather, a good builder (often as part of a team of carpenters,
masons, electricians, plumbers, etc.) follows blueprints or drawings that group the pieces into
categories based on their functionality (e.g., framing, wiring, plumbing, etc.) or location (e.g.,
basement, bedroom no. 1, kitchen, etc.).

The modeling process can be thought of in much the same way. Before anything is built, a
modeler should take on the role of an architect and lay out a logical way to break down a
potentially complicated object into smaller, more manageable pieces. Also, this step can often
reveal a logical building order (e.g., the drywall does not get installed until the wiring inside the
walls has been run) as well as identify important interconnectivities among parts.

 9

The following list provides some tips to achieve good model structuring:

1. Use a top-down approach: It is a good idea to design the structure using a top-down
approach, beginning with the largest, most encompassing, or most functionally significant
parts/systems and working down from there. Once again, the model’s mission is all-
important here. If an armored tank is being modeled for a ballistic analysis, the model
should probably be structured so that all the pieces connected to the turret are grouped
together and, therefore, can move together when the turret is rotated.

2. Take advantage of established organizational conventions: It is wise to follow any
traditional or widely used conventions that might be available in, say, an owner’s or
operator’s manual. If a mechanic or user would normally expect a particular component to
be part of a suspension system, then it is wise for the modeler to structure his model
accordingly unless there is a good reason to do otherwise.

3. Use good naming practices: Closely associated with the idea of using good
organizational conventions to structure geometry is the idea of using good naming
conventions to name geometry. Although naming may appear to be a trivial matter, the
fact is that it is not always easy to establish titles and schemes that are intuitive, robust, and
useful in helping the end user know where he is in a potentially complex model.

There are few limitations to how files and objects can be named in BRL-CAD (other than
that each file/object name must be unique). However, new modelers soon find that random
or haphazard naming schemes lead to inefficiency and frustration. Thus, the following
general recommendations are provided to help modelers efficiently organize and track what
they build.

a. Develop logical schemes, stick to them, and document them: If logical or obvious
titling schemes (such as a manufacturer’s part names or numbers) are already in place,
the user should take advantage of them, especially at the highest assembly levels of
“complete” or aggregated objects and especially when multiple modelers are involved.*
This practice helps establish a logical structure (e.g., all engine parts have a prefix of,
say, eng),† and many users may already know these names.

Table 3 provides examples of a number of other logical naming conventions
traditionally used in BRL-CAD. These conventions include (1) an initial nametag to
designate shape/object type or function (i.e., sph for sphere, ant for antenna, and frf for
front face); (2) a suffix (or prefix) to designate MGED object type (i.e., .s for primitive
shapes [formerly referred to as “solids”], .r for regions, .c for shape combinations, and

*The definition of a “complete object” is, of course, highly subjective and depends on the perspective of the modeler and on the purpose of

the model.
†Older analysis codes use ranges of integers for names of objects. These ranges are associated with certain functions (e.g., 4000 for engine

parts). This convention, however, obstructs meaning to all but a select few users. Naming conventions should be intuitive when possible.

 10

Table 3. Examples of naming conventions.

Name Rationale

sph.s1,
sph.r1,
sph.c1

Associates the name with primitive shape type (sphere), order of
creation (1), and MGED object type (shape [.s], region [.r], or
combination [.c]). Often used for training or testing BRL-CAD
functionality but not recommended for large, complex models.a

ant.s1,
ant.r1,
ant.c1

Associates the name with type of function (antenna), order of creation
(1), and MGED object type (shape [.s], region [.r], or shape
combination [.c]).

frf.s1-1,
frf.s1+1,
frf.s1

Associates the name with function (front face), MGED object type
and order of creation (.s1), and type of Boolean operation performed
(subtraction [−] and intersection [+]).b This is the notation currently
used with the Build Pattern tool.

front_face.a,
right_antenna.a,
left_roadwheel.a

Gives the assembly combination levels (.a) more descriptive titles to
better designate overall model composition and/or functionality for the
end user.

Driver Main_Gun
M1A1

Gives top-level assemblies human-readable descriptions of overall
composition and/or functionality. Uses initial capitalization to show
higher tree level and disregards traditional MGED suffix.

aSometimes the primitive shape tags are used to name temporary objects that the modeler knows will be
replaced or discarded. In this case, a more intuitive, functional name, such as “temp,” is recommended.

bNote that we have chosen not to associate a suffix for objects that are unioned. In this naming convention,
objects without a Boolean operation suffix are understood to be unioned.

.a or .g for assembly combinations); and (3) some sort of sequential numbering scheme
(i.e., 1, 2, 3, etc.). For more information on BRL-CAD shapes and modeling levels, see
Section 5, as well as Lesson 5 and Appendix C of BRL-CAD Tutorial Volume II
(Butler et al., 2001).

Note that the suffix at the end of names is particularly useful for searching for similar
items in large tree structures and for using MGED automation features such as the
Build Pattern tool and the build_region command (see Appendices E and F).

b. Keep names short: Prior to BRL-CAD release 6.0, all BRL-CAD names were limited
to 16 characters. In some respects, this “limitation” was useful, compelling new
modelers to resist the common urge to name primitives with as much detail as possible.
Although the length restriction no longer applies, it is still a good idea, especially in
large models (and with frequently used objects), to keep names of objects as short as
possible so as to reduce the amount of typing the modeler must do and, thus, reduce the
possibility for input errors. In addition, some vulnerability analysis codes do not
support names longer than 16 characters.

As shown in Table 3, an exception to the practice of keeping names short includes the
names at the assembly combination level and above, where fewer names are used and
more descriptive titles can be helpful in designating overall model composition and
structure for the end user.

 11

c. Establish “reserve” names: In projects that involve multiple modelers developing
different pieces of the same geometry, it is helpful in some cases to reserve particular
name designations to avoid possible confusion. For example, a team of modelers
developing an armored vehicle might choose to reserve the letter “h” to denote the
“nametag” for only those components associated with the hull (e.g., “h.s1,” “h.s2,”
etc.). This would mean that those modelers building, say, headlight assemblies would
have to choose another designation (e.g., “hlght.s1,” “hlght.s2,” etc.). This
standardization can also be helpful in establishing common terminology for later
projects with the same or similar components.

d. Avoid using certain letters and symbols: To avoid potential problems associated
with common UNIX notation, searching schemes, and certain survivability, lethality,
and vulnerability (SLV) analysis codes, the following recommendations (or, in some
cases, requirements) are made regarding the use of keyboard characters in BRL-CAD
names:

(1) Use lowercase Arabic letters (except for the previously mentioned initial
capitalization used for top-level assemblies).

(2) Use numerals without internal commas (e.g., “5000” not “5,000”).

(3) Avoid using numerals to begin a name.

(4) Do not use a space between words; use an underline or capitalize the first character
of each word (i.e., Hungarian notation).

(5) Avoid using special characters. Restrict the use of “+” and “−” symbols to the
suffix of primitive shape combinations, and do not use the “/”.

(6) Restrict the use of the period to the suffix of MGED object types. Avoid using
other punctuation (e.g., “?,” “!,” etc.).

(7) Avoid using the lowercase letter “l” by itself (to avoid possible confusion with the
number “1”).

4. Include the right amount of detail: The structure should only be as deep as needed for
the application. Obviously, every part, no matter how complex, could in theory be reduced
down to the atomic or even subatomic level, but how cost efficient and useful would this
be? More is not necessarily better. The modeler should use common sense and consult
with the end user(s) when deciding how far to break down components and systems.
Insufficient detail can diminish the model’s usefulness and reduce user confidence, and yet
too much detail can unnecessarily drain time and resources, slow down processing time of
application codes, and frustrate users who have to wade through many parts that they do
not need to get to what they do need.

 12

Note that it is not unusual for a modeler to select relatively arbitrary names
when shapes and parts are first made and then go back and rename them as the
model develops. There are two commands to rename database objects.

To rename only the database object, type the following:
mv oldname newname

Note that this command changes only the name of a particular object and not
any references to the object that may occur in combinations throughout the
database.

To change an object’s name and all references to that object, the mvall (move
all) command can be used as follows:

mvall oldname newname

5. Use location- and function-based groupings: Components should be grouped based on

simple, logical categories such as location and/or functionality. For example, the structure
of the simple radio that was built in Lesson 16 of Volume II of the BRL-CAD Tutorial
Series (Butler et al., 2001) could be set up in several ways. Figure 4 shows a structure
based on location, and Figure 5 shows a structure based on functionality.

Figure 4. Location-based structure of the radio in Volume II.

Figure 5. Function-based structure of the radio in Volume II.

Radio

External Components Internal Components

Antenna Button Case Knob Board

Radio

Antenna Case Electronics

Button Board Knob

 13

The structuring phase, of course, gets trickier and more subjective as the model gets more
complex. Regardless of whether the structure is based on location, function, or something else, it
is not always clear which parts belong to which structures. In fact, some parts are clearly
designed to interface between parts or systems, and so the modeler must choose where he should
place them in the tree structure. A consistent treatment of these parts within the model is an
important part of the user’s ability to understand and use the model.

It is also important to remember that the tree structure in MGED is independent of the geometry
created. The structure is simply a tool to help the user organize and work with the database.
Accordingly, the tree structure can be manipulated to suit whatever needs the user(s) may have.
Consider the example of a model of a room containing a table and a cup on top of the table. If
one wanted to relocate the table (along with the cup) next to a wall, one could create a temporary
combination containing the table and the cup. This combination could then be used to move the
two objects together to their new location. After the objects are in position, the temporary
combination could be “pushed” (see discussion of the push command in Section 5) and then
deleted using the kill command (see Appendix A of Volume II [Butler et al., 2001]).

5. Developing Geometry

In the end, the heart of the modeling process is the actual construction of the geometry. All the
best measurement, organization, evaluation, and documentation would be ineffective unless the
geometric shapes that make up a model are built and built correctly.

Basically, there are two steps to geometry development: (1) creating geometry, and (2)
positioning geometry. Of course, as with all the other phases in the modeling process, there are
different schools of thought as to how these steps should be accomplished, and each method has
its own set of advantages and disadvantages.

Factors that need to be considered when deciding which methods to use include the convenience
of building location and manner (e.g., building geometry at the origin or in an order that
leverages previously defined measurements or mathematical calculations); the number of object
replications that will be needed in the model; the ease of editing one or more of the replications;
storage space; prep/rendering time; etc.

The following are some general tips regarding the efficient development of geometry in BRL-
CAD:

1. Build the main structure first: As mentioned previously, it is a good idea to start
building with the “main” object of a model. This could be the largest piece, the piece most
central to the rest of the model, or a piece whose location represents a prominent corner or

 14

point. Much like on the assembly line of an automobile manufacturer, building the main
frame first provides an overall model coordinate system for the rest of the smaller,
secondary parts to reference. Also, for projects in which multiple modelers work on
separate pieces simultaneously, starting with the main structure allows other pieces to be
built in place or put in position immediately upon completion. This practice is more
efficient in that it eliminates having extra parts floating around waiting to be positioned,
and it provides a better picture of model completion throughout the project.

2. Know the four modeling levels and their differences: As shown in Table 4 (and
discussed in Volume II [Butler et al., 2001]), all models built in BRL-CAD are built within
the confines of its four modeling levels: (1) the primitive level, (2) the combination level,
(3) the region level, and (4) the assembly level. Knowing the characteristics of these
modeling levels is one of the first keys to developing effective geometry.

Table 4. The four modeling levels in BRL-CAD.

Modeling Level Description

Primitive level
(.s)

This level is where one performs three-dimensional
(3-D) CAD “sculpting,” working with the primitive
shapes to represent the target geometry in coordinate
space. Objects at this level are not recognized as
having volume or material properties.

Combination level
(.c)

This level is an optional intermediate level between
primitives and regions or regions and assemblies. It
allows Booleaned objects to be subtracted and
intersected. All nonprimitive objects are stored as
combinations.

Region level
(.r)

This level is the lowest level at which geometry
occupies 3-D space and can have material properties. It
is where one assembles primitives and defines positive
volume using Boolean logic. A region must be
composed of one material, should be interconnected,
and should perform the same function.

Assembly level
(.a or .g)

This is the level at which subparts are organized into
parts and parts are organized into assemblies. This is
also where meaningful names and appropriate
hierarchical structure are applied.

3. Know the major primitives and their constraints: Another key to good model building

is to understand the required inputs, editing options, geometric characteristics, and relative
advantages/disadvantages of the package’s basic “building blocks”—the primitive shapes.
Although the package currently has more than 20 primary primitives (as well as another
dozen developmental/special-use primitives), only a few of these primitives are used on a
regular basis (see Table 5). That is not to say, of course, that less common shapes could
not be used, but with some experience, users can begin to “see geometry” in a relatively
small set of primitives and understand the data needed to produce accurate models.

 15

Table 5. The major BRL-CAD primitives and parameters.

Primitive Shape/BRL-CAD Abbreviation Input Parameters/Definitionsa

Arbitrary convex polyhedron, 8 pts (arb8)

-8 vertices, 6 faces, and 12 edges.
-Each face must be a plane.
-Illegal variations include the following:

Arbitrary convex polyhedron, 6 pts (arb6)

-6 vertices, 5 faces, and 9 edges.
-Stored as an arb8, where point 8 is coincident with
point 5 and point 7 is coincident with point 6.

Sphere (sph)

-Vertex, V.
-Radii, A, B, C.
-Stored as an ellipsoid (ell).
-Vectors A, B, and C are mutually perpendicular.

Right circular cylinder (rcc)

-Vertex, V.
-Radii, A, B, C, D.
-Height vector, H (base-to-top distance).
-Stored as a truncated general cone (tgc).
-Vectors A and B have equal lengths, C and D have
equal lengths, and all vectors are perpendicular to H.

Torus (tor)

-Vertex, V (center of hole).
-Normal direction for the plane of the ring.
-Radius 1 (radius from V to center of tube).
-Radius 2 (radius of tube).

Pipe (pipe)

-Outer diameter (OD).
-Inner diameter (ID).
-Bend radius (equivalent to an r1 value of a torus).
-Each point contains X, Y, Z coordinates, OD, ID,
and bend radius data.
-Is effectively a subregion combination of cylinders
and bounded tori whose path is defined by a series of
coordinates.

aTo maximize database efficiency, some shape types are stored as other types (e.g., all arbs are stored as arb8’s),
but this behavior is invisible to the user.

 16

For a list of all the primary primitives and their shapes, see Appendix C of
BRL-CAD Tutorial Volume II (Butler et al., 2001) or consult
<http://ftp.arl.army.mil/brlcad/> (U.S. ARL, 2003). For detailed guidance on
using the pipe and the extruded bitmap (ebm) primitives, see Appendices A
and C of this volume.

4. Use the best command to build primitives: In addition to understanding the package’s

basic building blocks and modeling levels, it is important to understand the behavior and
advantages/disadvantages of its basic building “tools” (see Table 6). Using the right
building command at the right time can maximize modeling efficiency by, in some cases,
taking advantage of data from previously built geometry and saving measurement and/or
input time.

5. Build objects in the most convenient location: Although coordinate systems vary
according to the type of situation (e.g., converted geometry or group modeling, where a
particular orientation has been established), BRL-CAD models are generally centered at
the origin (x y z = 0 0 0), where the +X axis is front, the +Y axis is left, and the +Z axis is
up.

For objects that are symmetrical in nature, this practice can take advantage of BRL-CAD’s
mirroring operations and can provide simpler reference numbers for objects that are more
complex in composition and/or orientation. In some cases, however, the modeler will find
it makes more sense to build objects in place in the model. These include cases in which
previously created objects offer convenient reference numbers for the object’s
location/orientation and cases in which tangencies* and other necessary calculations would
be more difficult to derive with the object at the origin.

Note that there are traditional coordinate system conventions that some organizations use
for their target descriptions (Ellis, 1992; Robertson et al., 1996; Winner et al., 2002). For a
turreted vehicle, the origin is traditionally located at the intersection of the axis of the turret
rotation and the ground surface. The +X axis points to the front of the vehicle, the +Y axis
points toward the vehicle’s left, and the +Z points up (see Figure 6). For a nonturreted
vehicle, the axes are the same, but there is no axis of rotation to provide a definitive
reference point. So, the origin is located at the intersection of the ground surface and a
convenient point along the left-right, mid-plane of the vehicle (see Figure 7). For fixed-
wing and rotary-wing aircraft, the axes are the same, but the origin is located on the front
nose of the airframe (see Figures 8 and 9).

*For those not familiar with the term, tangency refers to a line, surface, or curve touching but not intersecting another line,

surface, or curve. Unfortunately, the mathematics involved in finding tangencies can often be complex.

 17

Table 6. Various ways to build primitives.

MGED
Command

Behavior

Advantages/Disadvantages

Method of
Input

create

Creates a “generic” primitive shape based
on the user’s screen size and center.

Creates shape without having to input
parameter/location values; primitive
usually requires further editing; puts
user into edit mode.

Graphical
user

interface
(GUI)

make
Creates a “generic” primitive shape based
on the user’s screen size and center.

Creates shape without having to input
parameter/location values; primitive
requires further editing.

Command
line

in
Creates a new primitive shape according
to user-input parameter values and
location.

Allows user to create a shape in a
specific size and location without
having to further edit it.

Command
line

inside

Creates a primitive shape by referencing a
previously created shape and applying
user-defined positive/negative thicknesses
to faces (e.g., making an interior wall).

Allows user to create a shape based
on a specified primitive by applying
wall thicknesses without having to
further edit it.

Command
line

cp
(copy)

Creates a duplicate of a previously
defined object.

Copies the parameters of an object to
a new object of the same type. Takes
advantage of previously defined
measurements and locations.

Command
line

cpi
(copy
index)

Originally created to model wiring or
piping runs; creates a duplicate cylinder
whose base vertex is coincident with the
top of the original cylinder.

Can only be used with cylinders;
takes advantage of previously defined
measurements and locations; puts
user into edit mode automatically.

Command
line

mirror

Creates a duplicate primitive shape,
region, or assembly and locates it across
the x, y, or z axis.

Takes advantage of previously
defined measurements and locations;
can mirror across only one axis at a
time at the axis 0 point.

Command
line

pattern

Creates a rectangular, spherical, or
cylindrical pattern of primitive shapes,
regions, or assemblies by referencing a
previously created object and applying
user-defined offsets and parameters.

Takes advantage of previously
defined measurements and locations;
requires extra positioning
measurements.

GUI or
command

line

Note the in and inside commands are often the best ways to create a primitive
in the right size/location if the modeler knows the parameters. Also, using the
cp and mirror commands to create primitives can often save time by taking
advantage of previously established measurements/positioning.

 18

Figure 6. Coordinate axes of a turreted ground vehicle.

Figure 7. Coordinate axes of a nonturreted ground vehicle.

Figure 8. Coordinate axes of a fixed-wing aircraft.

+Y

+X

(0,0)

+Y

+X

(0,0)

+X

+Y

(0,0)

+X

+Z

(0,0)

 19

Figure 9. Coordinate axes of a rotary-wing aircraft.

6. Build multiple occurrences of objects in the most advantageous manner: Sometimes a
modeler will have to make several occurrences of an object. For example, imagine
modeling a box of new, identical pencils. Wouldn’t it be convenient to take advantage of
the similarities involved? There are two basic techniques for constructing such collections.
The first involves actually replicating geometry; the second involves referencing shared
geometry.

Regardless of the technique used, the modeler typically starts by creating a prototype of the
object. In the first technique (illustrated in Figure 10), the modeler creates complete copies
of the object to be replicated. Each copy is then positioned within the model. In the
second technique (illustrated in Figure 11), a “reference” combination that contains only
the prototype is created. This combination is then positioned within the model.

As shown in Table 7, there are tradeoffs to be considered when using each of these
approaches. Construction effort is one of them. If the prototype consists of many objects
or layers of structure, replication could be a tedious task. In the box of pencils, for
example, all of the structure of the pencil would have to be duplicated, including the wood,
eraser, barrel, and lead. On the other hand, if the referencing approach is used, then a
relatively minor amount of work is needed to create the multiple occurrences.

+X

+Z

(0,0)

+Y

+X

(0,0)

 20

Figure 10. Building multiple occurrences through replication.

Figure 11. Building multiple occurrences through referencing.

Table 7. Advantages and disadvantages of replication vs. referencing.

Duplication Method Advantages Disadvantages

Replication
• No matrices.
• Faster prep time for raytracing.

• More effort to construct.
• Loss of update relationship between

occurrences.

Referencing

• Easier to create.
• Changes to prototype propagate to all

occurrences.
• Uses less disk space when creating

many occurrences of complex objects.

• Does not provide a unique object, which
is required by some analysis codes.

• Prototype parameters do not reflect
location and orientation of an individual
reference.

Also, if the modeler wants to make a change to all of the objects (e.g., sharpening the point
of the pencil), then the referencing approach has definite advantages. The prototype object
is edited to incorporate the change, and all occurrences automatically reflect that change.
However, if only one object is to be modified, then a copy of the prototype must be made,
and the reference for that item must now refer to the copy. Not surprisingly, when this type
of operation is to be performed often, the replication approach has definite advantages over
the referencing approach.

Pencil
Prototype Collection

(assembly,
region, or

combination)

Pencil
Copy 1

Pencil
Copy 2

Pencil
Copy 3

Ref 1

Ref 2 Pencil
Prototype

Ref 3

Collection
(assembly,
region, or

combination)

 21

Referencing also has the advantage that it can reduce the amount of disk space needed to
store multiple copies of complex objects. The extra space needed to store each new
occurrence on disk consists of the transformation matrix and the name of the object and
reference combination. This can be significantly smaller than the replication of all the
geometry that makes up the prototype.

It should be noted, however, that because some analysis codes require a unique identifier
for each object in the database, some agencies require that all occurrences be replicated to
the primitive level without matrices.

There are several other tools that can make the duplication process easier—namely, the
Build Pattern tool and the keep and dbconcat commands. The Build Pattern tool, which is
discussed in Appendix E, can help the modeler automatically generate multiple copies of
geometry in rectangular, spherical, or cylindrical patterns. The keep command can be used
to save portions of geometry, and the dbconcat command can be used to concatenate (add)
them to other geometries or reinsert them into the existing database as copies.

7. Use the push command to eliminate matrices from replicated geometry: When the
replication technique has been used to copy a particular piece of geometry, the push
command is frequently used to walk the geometry tree from a specified top to the primitive
level and collect the matrix transformations (i.e., any translations, rotations, or scales
applied to the new assembly using matrix edits). The push command applies the matrix
transformation to the parameters of the primitives, eliminating the need for storing the
matrices. One disadvantage of this operation is that any local coordinate system used in
constructing objects is lost.

8. Use the best method for exporting and importing pieces of a database: Sometimes a
modeler will want to save a portion of a model to be added to another database, to be
reinserted into the original database as a copy, to be saved for future use, or to be edited as
a new database (e.g., using a crew member or engine from one database in a different
database). There are two commonly used methods to export and import geometry in BRL-
CAD: (1) using the keep and dbconcat commands from the command line, or (2) using
the export and import commands from the GUI.

For the first method, the keep command exports data either creating a new database file or
appending objects to an existing database. The form of the command is as follows:

mged> keep filename.g object(s)
The dbconcat command adds the contents of an existing database file to the database
currently open. The user may import the database as is or choose to rename each element
of the geometry by specifying a prefix. The user may alternatively use the -s or -p option
to add a computer-generated suffix (-s) or prefix (-p). The form of the command is as
follows:

 22

mged> dbconcat [-s, -p] filename.g [prefix]
As mentioned previously, every BRL-CAD object must have a unique name; however,
when combining geometry from more than one database, there may be duplicate names
(especially if a modeler uses standard naming conventions in all of his models). If there
are name collisions, the package will automatically add computer-generated prefixes to the
duplicate items in the concatenated geometry. The default prefix names are of the form
A_, B_, C_, etc. Note that these prefixes will not be added to the member names in
existing combinations in the database. This allows the user to edit or remove this geometry
independently of existing data, preventing unintentional overwriting of the existing
database items.

Another way to move data to and from separate databases is by using the export and
import commands in MGED’s GUI. Located under the File menu, these commands allow
the user to choose either ASCII or binary objects. They perform the same functions as
their command-line counterparts. (When exporting, if no objects are selected, the default
objects will be any that are currently displayed in the graphics window.)

It is good modeling practice to check for duplicate names before inserting new geometry
into your database. To check for duplicates, use the dup command from the command
line. This command compares external database file object names with current database
file object names and reports duplicate names. The form of the dup command is as
follows:

mged> dup file.g
Note that there is currently no GUI equivalent to the dup command.

9. Keep bounding primitives as small and compact as possible: Although it is possible to
use large primitives to achieve intersected or subtracted shapes in BRL-CAD (e.g., using a
large sphere to create the relatively flat curve of a radar dish), using bounding or
subtraction primitives that extend significantly beyond the outer boundaries of the positive
volume of the region is generally not recommended because it slows down raytracing
applications and can make wireframe geometry more difficult to view, especially in a
complex database.

Imagine that a user wants half of a sphere for the target geometry (see Figure 12). In some
cases, the user might want to use a large primitive that already exists in the database
because it is in the proper location/orientation or because it requires no edits. The user
should recognize, however, that whenever this object is rendered, any rays that pass
through the large bounding primitive will have to do the extra calculation to determine
whether or not the ray is in the positive volume for that region (see Figure 13). Therefore,
whenever possible, the use of smaller, more compact bounding primitives is recommended
(see Figure 14).

 23

Figure 12. Target geometry.

Figure 13. Example of an Overly Large Bounding Primitive.

Figure 14. Example of a compact bounding primitive.

Rays must pass
through and
evaluate a lot of
unneeded
volume.

Rays do not
have to waste
evaluation
time on
unneeded
volume.

 24

The half space is a prime example of an overly large bounding primitive.
Because its extent is infinite, it is always larger than needed. Therefore,
whenever possible, the modeler should use an arb8 or other primitive that can
be dimensioned to meet the modeling needs.

10. Consider the possibility of articulations, animations, and presentations: Sometimes

models need to be able to simulate movement in parts and personnel or to show unique
views for presentation purposes. Unfortunately, the modeler (or even the user) cannot
always predict all the possible uses at the outset of a project. Therefore, it is wise,
especially in organizations that use many different types of model applications, to try to
design and build models with the thought that they may need to be articulated, animated, or
presented in different configurations at some point.

For articulation and animation, this generally means that objects that normally move
together (e.g., components on a helicopter rotor, tank turret, etc.) should be grouped
together in assembly combinations (as shown in Figure 15).

Figure 15. Example of grouping objects for articulation.

In the example shown in Figure 15, we would want to create a turret_asy assembly with
turret_armor, main_gun, and commanders_hatch in it.

Also, as discussed in Lesson 16 of Volume II (Butler et al., 2001), specialty models or
assemblies can be made to simulate changes in model configuration (e.g., personnel
hatches opened/closed, crew compartments occupied/unoccupied, fuel tanks full/half
full/empty, etc.) or to show views not normally seen (e.g., transparent skin or cross-
sectional cutouts to show internal components, similarly colored components to show
subsystem categorization, etc.). Specialty models usually involve copying the original

Tree Structure

tank

turret_asy
 turret_armor
 main_gun
 commanders_hatch

turret_armor
main_gun

commanders_hatch

 25

model or assembly, altering the copy to achieve the special effect, and then substituting in
the copy as needed.

11. Understand and use Boolean operations properly: Because Boolean operations play
such a vital role in building geometry, it is important that the modeler possesses a good
understanding of them. As shown in Table 4, a combination is the BRL-CAD database
record that stores Boolean operations. It can take one of three forms:

(1) Primitive shape combination – a combination that intersects, subtracts, or unions
primitive shapes. This combination does not actually occupy 3-D space.

(2) Region – the lowest-level combination that assigns material properties to geometry and
occupies 3-D space.* Because it is impossible for two or more objects to occupy the
same physical space, it follows that one region cannot be unioned into or intersected
with another region (e.g., a wheel cannot occupy the same space as the axle that
connects to it). Conversely, subtraction is valid (e.g., subtracting a wall-mounted radio
from the wall on which it hangs). For a reminder of how Boolean combinations work,
see Figure 16.

(3) Assembly combination – a type of combination that associates two or more regions or
other combinations together.

Figure 16. Sample Boolean operations.

*Although primitives (and objects with no assigned material properties) have color when raytraced, this is simply a package

feature to allow the user to display geometry before it actually possesses material properties.

S1

S2

S3

u s1 u s2 u s3

u s2 - s1 - s3

u s3 - s2 - s1

u s1 - s2 - s3

u s1 + s2 + s3

u s1 - s2 + s3

u s1 + s2 - s3,
u s2 + s1 - s3,
u s1 - s3 + s2,
u s2 - s3 + s1,

u s2 + s3 - s1,
u s3 + s2 - s1,
u s2 - s1 + s3,
u s3 - s1 + s2

u s1 u s2 + s3

S1

S2

S3

u s1 u s2 u s3

S1

S2

S3

S1

S2

S3

u s1 u s2 u s3

u s2 - s1 - s3u s2 - s1 - s3

u s3 - s2 - s1u s3 - s2 - s1

u s1 - s2 - s3u s1 - s2 - s3

u s1 + s2 + s3u s1 + s2 + s3

u s1 - s2 + s3u s1 - s2 + s3

u s1 + s2 - s3,
u s2 + s1 - s3,
u s1 - s3 + s2,
u s2 - s3 + s1,

u s1 + s2 - s3,
u s2 + s1 - s3,
u s1 - s3 + s2,
u s2 - s3 + s1,

u s2 + s3 - s1,
u s3 + s2 - s1,
u s2 - s1 + s3,
u s3 - s1 + s2

u s2 + s3 - s1,
u s3 + s2 - s1,
u s2 - s1 + s3,
u s3 - s1 + s2

u s1 u s2 + s3u s1 u s2 + s3

 26

Combinations can be created with a variety of commands, depending on the user’s
requirements. These commands include the following:

(1) comb – creates a combination using Boolean expressions in GIFT* format. Proceeding
left to right, intersections (+) and subtractions (−) are performed before unions (u). For
example, the command

comb comb_name u a – b + c

is evaluated as

((a – b) + c).

(2) c – creates a combination using parenthetically ordered Boolean expressions. Where no
order is indicated, intersections are performed before subtractions or unions, and then
subtractions and unions, which have equal precedence, are performed left to right.

(3) r – creates a region out of primitive shapes or assembly combinations using Boolean
expressions in GIFT format. Unless the user specifies otherwise, default region ID, air
code, line-of-sight density, and GIFT material values are assigned.

(4) g – creates a combination by automatically unioning all user-specified elements
together. Thus, this command does not accept any sort of Boolean operators from the
user.†

In addition, there are several general recommended practices when dealing with Boolean
operations. They are as follows:

(a) Start with a positive volume: The modeler must start with a positive volume
before any subtraction or intersection operations are performed. If you are using
GIFT notation, this means that you must start with a union operator. If you are
using fully parenthesized standard notation, this means that you must specify an
object before specifying a subtraction or intersection from it.

(b) Be mindful of the order of Boolean operations: The modeler should make sure
unions, intersections, and subtractions are properly ordered in the region structure to
achieve the desired effect. For example, imagine that a modeler wants to subtract a
hole in a region named bolt.r. As shown in Figure 17, if that region consists of two
unioned primitives—head.s and shaft.s—the subtraction in the region must follow
the shaft primitive. Alternatively, if the hole is subtracted from the head, the
subtraction will have no effect because head.s and hole.s do not share any volume.

*Geometric information for targets (GIFT) is the single-level operator hierarchy format that is the traditional (and default)

notation used in BRL-CAD.
†The g command is derived from “group,” the term sometimes used for assembly combination.

 27

Figure 17. Properly (top) and improperly (bottom) ordered regions.

Note that in BRL-CAD releases 6.0 and later, fully parenthesized Boolean
expressions are available for the c command. This allows the user to designate
operator precedence on the command line based on standard parenthetical
notation as opposed to the order-of-occurrence and union-last methodology,
which is the previously described functionality in BRL-CAD.

12. Follow or develop standardized conventions for colorizing objects: When displaying a
complex model, it is sometimes difficult for the user to visually differentiate one system,
subsystem, or component from another. Also, it is not always clear as to which
components belong to which systems/subsystems. Therefore, if possible, it is good
practice to follow a standardized RGB (red-green-blue) color scheme for commonly
modeled/analyzed systems (e.g., engine, suspension, communications, etc.).

Table 8 shows some RGB colors traditionally used in MGED (out of a possible 17 million
color combinations between black [0 0 0] and white [255 255 255]) (Applin et al., 1988).
Table 9 shows some commonly used system-color assignments for various ground and air
target descriptions (as drawn in a graphics display window with a black background)
(Robertson et al., 1996; Winner et al., 2002).

13. Take advantage of advanced/automation modeling tools: BRL-CAD offers many tools
that can help users perform advanced functions or automate complex or tedious aspects of
the geometry development process. Examples of some these tools, which are discussed in
Appendices A–F, include the pipe primitive (which can automate the building of wiring or
hydraulic lines), the projection shader (which can paste words or images onto geometry
instead of having to build them), the extruded bitmap (which can turn two-dimensional
objects [e.g., a building floor plan] into 3-D geometry [e.g., walls]), the .mgedrc file (which
can create customized shortcuts for many MGED operations), the Build Pattern tool (which
can automatically replicate objects in a specified pattern), and the build_region command
(which can automatically build regions by grouping together similarly named objects).

r bolt.r u shaft.s – hole.s u head.s

r bolt.r u shaft.s u head.s – hole.s

 28

Table 8. Traditionally used MGED colors.

Color RGB Value Color RGB Value

Aquamarine 112 219 147 Spring green 0 255 127
Medium aquamarine 50 204 153 Yellow green 153 204 50

Black 0 0 0 Dark slate gray 47 79 79
Blue 0 0 255 Dim gray 84 84 84

Cadet blue 95 159 159 Light gray 168 168 168
Corn flower blue 66 66 111 Khaki 159 159 95
Dark slate blue 107 35 142 Magenta 255 0 255

Light blue 191 216 216 Maroon 142 35 107
Light steel blue 143 143 188 Orange 204 50 50
Medium blue 50 50 204 Orchid 219 112 219

Medium slate blue 127 0 255 Dark orchid 153 50 204
Midnight blue 47 47 79 Medium orchid 147 112 219

Navy blue 35 35 142 Pink 188 143 143
Sky blue 50 153 204 Plum 234 173 234
Slate blue 0 127 255 Red 255 0 0
Steel blue 35 107 142 Indian red 79 47 47

Coral 255 127 0 Medium violet 219 112 147
Cyan 0 255 255 Orange red 255 0 127

Firebrick 142 35 35 Violet red 204 50 153
Gold 204 127 50 Salmon 111 66 66

Goldenrod 219 219 112 Sienna 142 107 35
Medium goldenrod 234 234 173 Tan 219 147 112

Green 0 255 0 Thistle 216 191 216
Dark green 47 79 47 Turquoise 173 234 234

Dark olive green 79 79 47 Dark turquoise 112 147 219
Forest green 35 142 35 Medium turquoise 112 219 219
Lime green 50 204 50 Violet 79 47 79

Medium forest green 107 142 50 Blue violet 159 95 159
Medium sea green 66 111 66 Wheat 216 216 191

Medium spring green 127 255 0 White 255 255 255
Pale green 143 188 143 Yellow 255 255 0
Sea green 35 142 107 Green yellow 147 219 112

 29

Table 9. Commonly used system-color codes.

System Color RGB Value
Crew/passenger Tan 200 150 100
Exterior armora Gray 80 80 80
Fuel system Yellow 255 255 0
Armament (not ammunition)a Gray 80 80 80
Propellant Magenta 255 0 255
Projectiles Red 255 0 0
Engine/propulsiona Blue 0 0 255
Oil Lines/hoses Light brown 159 159 95
Coolant lines/hoses Green 0 255 0
Air lines/hoses Blue 0 0 255
Drivetrain Cyan 0 255 255
Driver/flight controlsa Dark blue 50 0 175
Suspension/rotor bladesa Gray 80 80 80
Tracks Dark brown 104 56 30
Tires/roadwheel rubberb Gray 80 80 80
Electrical Forest green 50 145 20
Hydraulics Pink 255 145 145
Communications/mission equipment package Lime green 50 204 50
Fire control Peach 234 100 30
Fire suppression Dark red 79 47 47

aArmy green (RGB 42 98 48) is recommended for white backgrounds (e.g., printouts).
bBlack (RGB 0 0 0) is recommended for white backgrounds (e.g., printouts).

A Final Word About Modeling Ease vs. Modeling Precision
Modelers can be tempted to use the “quickest” methods of creating and aligning
objects (e.g., using mouse clicks to size objects and the shift/control grips and
“eyeballing” to position them).

However, using precision MGED tools (e.g., the analyze and extrude
commands, the snap-to-grid feature, etc.), listing primitives, making temporary
assemblies, etc., is often more efficient. In addition, as the user becomes more
familiar with these tools and features, they become easier to use. For more
information on these specific features, see the appropriate on-line help in MGED.

6. Evaluating Geometry

Evaluating geometry for correctness is an important companion to building real-world models.
In fact, without testing the validity of the geometry’s positioning and composition, the modeling
process has not actually been completed. Evaluation is performed at the following two times in
the modeling process: (1) after individual objects are built and organized into regions and
combinations, and (2) after the model is completely built. In both cases, the primary evaluation

 30

goal is to identify any errors in measurement, logic, or input that would make the model invalid
or unrealistic.

One common error that the evaluation process reveals is overlapping geometry. Overlaps are the
physical violation that occurs when two or more objects (regions) occupy the same volume in
space. While this condition is occasionally acceptable (e.g., when modeling air volumes), it
creates inaccuracies when the geometry is later analyzed.

Because all of the volume within a region is considered to be one
material, it is acceptable for primitives within a region to “overlap”
without error (e.g., spheres rounding cylinder ends). However, it is good
modeling practice to minimize this wherever practical to simplify
Boolean logic and keep primitives as compact as possible.

Shotlining is the principal method of interrogation in BRL-CAD. Rays are fired through
geometry to report information about material properties, thickness, orientation, etc., of objects
encountered along each ray’s path (see Figure 18).

Figure 18. Shotline through a tank.

Glacis
Armor

Armor -Piercing
Rounds

HE
Round

Fire
Wall

Engine
Starter

Transmission
Sump

Fan
Rear

Armor

 31

There are several ways to evaluate BRL-CAD geometry. These include (1) rendering the image
using rt, (2) checking for overlaps using rtcheck (or the lesser-known/used g_lint or MGED’s
overlap tool), and (3) checking for faulty material composition (e.g., densities) using rtweight.

Generally, as soon as a region is completed, it is good practice to raytrace it using rt. This
allows the user to visually verify that all Boolean logic is correct and that the geometry has no
obvious problems. If there is anything questionable, it can then be examined more closely with a
raytrace that highlights that particular area. Note that rendering is also a good way to compare
geometry with drawings, sketches, photographs, or images from other CAD systems.

As subcomponents are organized into assemblies and the complexity of the geometry increases,
it is then a good practice to use rtcheck (or g_lint or the overlap tool) to help find any errors in
the geometry and isolate any problems.

The rtcheck feature is a program run from the MGED command line or shell command line that
fires a grid of rays through a list of objects in order to check for overlapping geometry. It reports
a total count of the overlaps and a list of overlap pairs, a listing of the paths to the regions, the
number of overlaps between each pair, and the maximum depth in millimeters. This is followed
by a summary of the total number of overlaps, the number of unique overlapping region pairs,
and a listing of all overlapping regions.

When run from within MGED, overlaps are displayed in the graphics display as yellow lines (see
Figure 19). These yellow lines are created as temporary database objects and are stored in a
combination called OVERLAPSffff00 (“ffff00” is hexadecimal notation for yellow [255 255 0]).
Note that these temporary objects cannot be edited or saved and last only as long as they are not
erased from the MGED display or are not overwritten by another set of overlaps.

After these lines have been created in the display, the user may use them as a visual reference to
analyze the overlaps. A good practice is to erase geometry (e.g., the top-level item) and draw
smaller subcomponents (perhaps just a few of the overlapping regions) to see more clearly where
and what the problems are. When doing this, note that the zap (Z) and blast (B) commands
should not be used until the evaluator is finished with the yellow lines as a visual reference. The
user should also keep in mind that the rays are difficult to see from the azimuth/elevation
orientation from which they were shot. To see them clearly, one should change the
azimuth/elevation to another orientation.

To get the output shown in Figure 20, the “all” assembly was displayed in the graphics window
and “rtcheck” was typed in the command window.

This command could also be run from outside of MGED. The command “rtcheck” is typed at a
shell prompt, followed by the file name and the list of objects to be evaluated (in this case, “all”).
Note that when running rtcheck from outside MGED, the default parameters include a top view
and a grid size of 512 × 512 cells (which is the default size for all rt operations). For more
details, see the on-line man page on rt.

 32

Figure 19. Example of overlaps in the graphics window.

When first checking larger assemblies, it is wise to use a relatively low-
resolution rtcheck grid size—say, 128 × 128 pixels. Often, there are simple
errors that produce large numbers of overlaps, and reporting them all takes a
long time. Starting with low resolution, however, allows the user to quickly
find and eliminate gross errors and proceed to the insidious small overlaps
using a tighter grid and more specific view parameters.

OVERLAP PAIRS
--
/all/drivetrain/transmission/t.r1 and /all/drivetrain/engine/e.r1 overlap

</all/drivetrain/transmission/t.r1, all/drivetrain/engine/e.r1>:
156 overlaps detected, maximum depth is 222.901mm
 /all/structure/frame/f.r1 and /all/drivetrain/transmission/t.r1
overlap
 </all/structure/frame/f.r1, /all/drivetrain/transmission/t.r1>:
104 overlaps detected, maximum depth is 70.7783mm
 /all/structure/frame/f.r1 and /all/drivetrain/engine/e.r1 overlap
 </all/structure/frame/f.r1, /all/drivetrain/engine/e.r1>: 16
overlaps detected, maximum depth is 71.2628mm
==
SUMMARY

276 overlaps detected
3 unique overlapping pairs (3 ordered pairs)
Overlapping objects: /all/drivetrain/transmission/t.r1
/all/drivetrain/engine/e.r1 /all/structure/frame/f.r1
3 unique overlapping objects detected

Figure 20. Example of an overlap report in the command window.

 33

Another tool that can be useful for evaluating geometry, especially target descriptions, is
rtweight. During or after model development, material codes and effective percentages can be
assigned to the appropriate regions/ combinations based on the known materials and weights of
actual components, subsystems, and systems. The rtweight feature can then be used to calculate
volume and material densities and provide the overall weight of the model. This information
can, in turn, be compared with the weight of the actual object to see if the two match. If they do
not, chances are that there is a problem in the model’s material property assignments or
construction (e.g., a hollow component was modeled as solid). For a list of standard material
codes and air codes and their associated densities, see Robertson et al. (1996) and Winner et al.
(2002).

In addition, the following are some general tips regarding the evaluation of geometry in BRL-
CAD:

1. Evaluate early and often: As mentioned previously, evaluations should be performed
both on individual objects as they are built and on sections of the model as they are
assembled. In general, problems identified early are more easily isolated and fixed than if
“buried” in a host of other problems. Early and continuous evaluation also reduces the
amount of evaluation that needs to be done at the end. Final evaluation at the end helps
ensure that the individual pieces are all working together in the model.

2. Evaluate at low resolution before high resolution: Especially in large and complex
models, running rtcheck at high resolution can be computation- and time-intensive.
Therefore, it is recommended that the modeler initially set a lower number of rays to be
fired, fix any significant overlaps, and then increase the number of rays and/or zoom in on
particular areas as fewer overlaps are found.

3. Use multiple views: Because rtcheck finds overlaps by firing individual rays at geometry,
it can miss overlaps that occur between rays (e.g., when viewing a face edge-on or with
low obliquity). Therefore, to ensure the highest evaluation accuracy possible, it is a good
idea to use several of BRL-CAD’s standard views (e.g., top; az 35, el 25; etc.) as well as at
least one arbitrary or randomly selected view (e.g., az 72, el 23).

4. Set the proper eye point: It is also possible for a user to miss detecting overlaps when the
eye point is set in the middle or front of an object (e.g., when Z clipping is turned on). This
does not mean that rtcheck is not catching them; it just means that they are not being
displayed. So, before an evaluation is run, it is recommended that Z clipping be turned off
and the eye point be sufficiently offset from the geometry so that the rays intersect the
entire breadth of geometry or portion of geometry the modeler wants to evaluate and
display.

 34

5. Chunk big problems into smaller problems: Experienced modelers in BRL-CAD know
that “killing” overlaps is simply a part of the modeling process. However, dealing with
large amounts of overlaps can be overwhelming, especially to a new modeler or a modeler
who has carefully built each piece and expects rtcheck to find few, if any, problems.
Fortunately, in many cases, what appears to be extensive overlapping might just be one
section of geometry (e.g., a wall of buttons and switches) that is slightly out of position,
and a simple translation or rotation can simultaneously fix many problems. In other cases,
overlaps are the result of simple miscalculations (e.g., a 2-in vs. a 1.5-in radius) that are not
likely to be noticed until positioned with surrounding geometry. Whatever the case, the
best approach to extensive overlaps is not to try to fix them all at once but to divide the
problem into smaller problems, concentrate on individual pieces, and use the display to
help identify and fix errors. For example, rather than starting with “all,” start with, say,
“engine,” and then add “chassis.” One can then continue this process and work up to
evaluating the entire model.

7. Logging Documentation

The final step in the modeling process—documentation—is extremely important and can mean
the difference between models that are useful for a week and models that are useful for years to
come. Thorough, well-planned documentation is key to the user/analyst being able to effectively
use what the modeler has spent many hours building. Sloppy or incomplete documentation, on
the other hand, is like finishing up an otherwise well-built house with a bad paint job. It can
serve to cover up all the good work the modeler has done and give the end user the false
impression that bad documentation is an indicator of bad measurement, organization,
development, and/or evaluation.

Fortunately, when included in the planning process, good documentation is easy to produce.
Once again, the way one sets up and produces documentation is highly dependent upon the
purpose of the model. There are several questions the modeler (who now takes on the role of
technical writer) must address to assist the end user(s):

1. Who will be using the model?

2. What are the user(s) going to do with the model and why?

3. What information can I give about the model that might save the user some time or
frustration?

 35

Documentation can exist in several different forms. It can be a comprehensive chronological or
topical summary of the project as a whole. It can be attribute tags (which are available in
BRL-CAD 6.0 and later releases) about individual shapes and regions. Or it can be just some
notes to help the user work with the model (e.g., to explain how to show articulation).

Regardless of the type of setup, the following recommendations are made to achieve effective
model documentation:

1. Tell what it’s got and what it’s not: It is useful to record not only what components have
been included in the model but also what components/details have not been included (and
why). This will remove doubt as to what the end user does and does not have.

2. Tell the purpose of the model: Although the primary end user may know exactly what
the intended application of the model may be, the documenter should consider the
possibility of other users becoming involved during a model’s lifetime. Furthermore, these
users may not know the model’s original purpose and may try to use the model in a way in
which it was not intended. The documentation should explain the choices the modeler
made as well as identify, if applicable, ways in which the model has been designed for
articulation and/or animation.

3. Tell when it was built: This information identifies the time period during which the
model was built. This information can be especially important when modeling
developmental items with continuously changing design or model specifications. If a
model undergoes a radical redesign during any stage of the development process, the
period of performance can help identify why the model does or does not reflect given
redesigned components as well as identify when changes were implemented.

4. Tell from what sources it was built: It is important to note the type of data sources from
which the model dimensions were collected (i.e., field measurements, special tools,
mechanical drawings, or converted geometry). If a modeler physically measures an object,
it is also important to note any specific manufacturing information (e.g., make and model,
year of production, factory, etc.), any special designators or insignias, and any damaged or
missing items.

5. Tell how it was built: This information records the significant techniques and
configurations that were used to build the given geometry as well as any irregular or
specialized constructions (e.g., for articulation, an intended ballistic impact scenario, etc.).
Also included here are basic tree structures and any naming conventions used.

6. Tell the level of detail to which it was built: This information documents the specific
tolerances and level of accuracy used to construct the model, as well as ways in which
accuracy was checked (e.g., rtcheck and rtweight).

 36

Documentation is often written at the end of the modeling project and published as a formal
technical or summary report. Another good method is to document significant items as they are
encountered throughout the modeling process. This practice records important information while
it is fresh in the mind of the modeler as well as reduces the amount of writing required at the end
of the project (when energy and/or interest levels may be low).

Finally, it is a good idea to imbed the documentation (e.g., as a text file) directly into the
database so that it always remains connected to the geometry it addresses. For example, the
command

dbbinary –i u c documentation /home/fred/doc.txt

will create a BRL-CAD binary object named documentation, and the object will contain the
text from the file named /home/fred/doc.txt.

 37

8. References

Applin, K. A.; Muuss, M. J.; Reschly, R. J.; Gigante, M.; Overend, I. Users Manual for BRL-
CAD Graphics Editor MGED; Internally published; U.S. Ballistic Research Laboratory:
Aberdeen Proving Ground, MD, 1988.

Butler, L. A.; Edwards, E. W. BRL-CAD Tutorial Series: Volume I – Overview and Installation;
ARL-SR-113; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2002.

Butler, L. A.; Edwards, E. W.; Schueler, B. J.; Parker, R. G.; Anderson, J. R. BRL-CAD Tutorial
Series: Volume II – Introduction to MGED; ARL-SR-102; U.S. Army Research Laboratory:
Aberdeen Proving Ground, MD, 2001.

Ellis, C. A. Vulnerability Analyst’s Guide to Geometric Target Description; BRL-MR-4001;
U.S. Army Ballistic Research Laboratory: Aberdeen Proving Ground, MD, 1992.

Robertson, J. L.; Thompson, N. P.; Wilson, L. W. Combinatorial Solid Geometry Target
Description Standards; ARL-TR-1054; U.S. Army Research Laboratory: Aberdeen Proving
Ground, MD, 1996.

U.S. Army Research Laboratory (ARL). http://ftp.arl.army.mil/brlcad/ and subpages; Aberdeen
Proving Ground, MD, April 2003.

Winner, W. A.; et al. Target Description Standards for Ballistic Survivability, Lethality, and
Vulnerability Analyses of Ground Mobile Vehicles and Aircraft; Special report (draft); U.S.
Army Research Laboratory: Aberdeen Proving Ground, MD, May 2002.

 38

INTENTIONALLY LEFT BLANK.

 39

Appendix A: Using the Pipe Primitive

A.1 General Use

The pipe primitive, which is discussed in Section 5 (see Table 5) of this report, is an especially
useful tool in the U.S. Army Ballistic Research Laboratory - Computer-Aided Design (BRL-
CAD) package. The primitive was designed for representing tube-shaped geometry (e.g., fuel,
hydraulic, wiring, and plumbing lines) by automatically handling several computations and
procedures. Advantages of the pipe include the following:

1. Fewer primitives and Booleans. One pipe primitive can effectively represent hundreds of
cylinders and tori with their associated subtraction and bounding primitives. This means
fewer parameter values to define and simpler regions.

2. Easier editing. Because the pipe is just one primitive, extending it, hollowing it out, or
otherwise changing its parameters can be easily and efficiently performed without having
to edit many primitives. Unfortunately, seemingly simple edits to combined geometry can
often require not-so-simple changes/calculations associated with the underlying primitives.

Although a pipe is a single primitive (regardless of how long it is and how many bends it has),
geometrically, it is effectively a series of cylinders connected by torus sections. As illustrated in
Figure A-1, the pipe must have a minimum of two end points (shown in blue). Between the end
points can be any number of other points (shown in red) to designate bends in the pipe or
changes in pipe diameter. All points (including end points) contain information to define the
bend radius, outer diameter, and inner diameter.

To build a pipe, points can be appended after a given point, prepended before a given point,
moved, or deleted; and the parameters at each point can be independently edited at any time.

One potentially confusing aspect of the pipe is that bend points do not always lie along the pipe’s
path. This is because the bend radius dictates the path of the pipe between points. As shown in
Figure A-2, which depicts the same pipe with three different bend radii, a small bend radius means
the bend point will be closer to the path of the pipe, and a large bend radius means the point will be
farther away. Also, because a bend is computationally equivalent to a section of torus, each point
is constrained to accept only those bends that are consistent with the parameters of a torus (e.g., the
user cannot specify a bend radius that is so small that it violates the defined characteristics of a torus).

In addition, because they are defining turns, points in a pipe are often nonlinear. However, as
shown in Figure A-3, collinear points can also be used when a modeler simply wants to achieve a
tapered or “stepped” inside or outer diameter on a straight-running tube. Examples of other
potential uses include a notched axle on a vehicle, a pressed gear fitting, and a tapered end on a
garden hose.

 40

Figure A-1. Basic pipe with parameters.

Figure A-2. Various bend radii.

End Point
Bend Points

End Point

All points in a pipe are
defined by (1) a bend radius,
(2) an inner diameter, and
(3) an outer diameter.

Outer Diameter

Inside Diameter

Small
Bend

Radius

Medium
Bend

Radius

Large
Bend

Radius

Bend Points

 41

Figure A-3. Example of special uses of the pipe.

Nonetheless, it is good modeling practice to build your pipe with only those points needed to
define its shape. It is not necessary to add extra collinear points along a long straight section of
pipe. Note too that pipes are not required to have hollow volume in them at all. The modeler
can set the inner diameter to 0 and achieve a solid shape.

Modelers should remember that when a pipe is made with the make or create command, the
default values for the previously listed parameters are based upon the size of the view in the
graphics window when the pipe is first created. This is important because modelers can
sometimes find themselves unable to move or delete certain points due to relatively large bend
radii (e.g., that might have been established when the pipe was first created in a relatively large
graphics window). These large radii constrain the shape and prevent it from accepting
mathematically invalid commands (e.g., a larger inner diameter than outer diameter or an
unacceptably tight bend radius).

A.2 Making a Coil

In addition to using the pipe primitive to make tubular objects such as electrical and hydraulic
lines, it can be used to make other types of objects.

Consider, for example, the building of a wire coil. The pipe primitive can reduce the complexity
of the process by avoiding some of the difficulties associated with combining geometry.

The main challenge of using the pipe to build a coil is to locate where the points should be in
order to achieve the properly dimensioned geometry. We can start with the following measured
dimensions:

Points With
SMALLER Outer
Diameters

Points With
LARGER Outer
Diameters

An inner diameter of 0
results in no hollow volume.

 42

1. Diameter of the coil – The critical measurement here is the center-to-center measurement.
It is difficult to measure this directly, but it can be easily derived from an outside-to-outside
measurement by subtracting the wire diameter.

2. Diameter of the wire – This will define the outer diameter (or gauge) of the pipe.

3. Height per coiled section – The best way to derive this measurement is to take a total
measurement of the coil sections and divide by the number of turns. This will ensure the
total height and number of turns are correct and will allow one to measure to the tolerance
of his tool with minimal error.

In the example shown in Figure A-4, the coil diameter is 1/4 (0.25) in, the wire diameter is 1/32
(0.03125) in, and the height of each of the 10 coil sections is 7/32 (0.21875) in.

Figure A-4. Determining the point positions for the copper coil.

Top View of One Coil Section

End Points

0.25 in
0.28125 in

0.03125 in

Bend
Points

Full Coil
(Az35, El25)

Front View of One Coil Section

2.1875 in total height
÷ 10 coils = 0.21875 in
of rise per coil.

2.1875 in

 43

The key to properly and precisely positioning points to build a coil section is to use half of the
coil diameter as an offset. The first and the last points in the coil must lie on the pipe’s path.
These points are easily determined at 90° intervals from the center of the pipe (or, with a bit of
trigonometry, at any interval). The rest of the points for the pipe are located at ± offsets in
whichever plane is perpendicular to the pipe height vector from the center of the pipe with the
proper height delta (which will generally be 1/4 of the height per coil section).

Obviously, the construction of this type of object is a little more advanced than the construction
of many of the other types of objects discussed. Thus, the following text provides the user with
step-by-step instructions that can also serve as a kind of template when using the pipe primitive
to build a coil or similar object.

To build two turns of a coil at the origin with a coil diameter of 1000 mm, a wire diameter of
200 mm, and a coil height of 400 mm (running along the +Z axis), the user would perform the
following steps (or ones similar to them):

1. Set the units to millimeters using the units command on the command line (mged>units mm)
or the Units option in the graphical user interface (GUI) (File Preferences Units).

2. Set the screen size to 2000 using the size command (mged>size 2000) and center the
screen at 0 0 400 using the center command (mged>center 0 0 400).

3. Create a pipe named spring.s1 using the make command (mged>make spring.s1
pipe) from the command line or the Create option from the GUI. Select the pipe for
editing using either the sed command (mged>sed spring.s1) or the Enter Primitive
Name dialog box.

4. With the default pipe in edit mode, set the diameter of the wire. To do this, first set the
inner diameter of the wire to 0 by using the Edit menu’s Set Pipe ID option and the p
command on the command line (mged>p 0). Next, set the outer diameter to 200 using
the Set Pipe OD option and the p command (mged>p 200). (Be sure to set the Pipe
inner diameter [ID] and outer diameter [OD], not the Point ID and OD.)

5. Set the pipe bend to 500 mm using the Edit menu’s Set Pipe Bend option and the p
command (mged>p 500).

6. Translate the pipe to coordinate 0 500 0 by selecting the Edit menu’s Translate option and
the p command (mged>p 0 500 0).

7. Choose the Edit menu’s Select Point option and use the center mouse button to click on
(or near) the top of the pipe segment.

8. Move the top end point to 500 500 50 using the Edit menu’s Move Point option and the p
command (mged>p 500 500 50).

 44

9. Add points at the following coordinates using the Edit menu’s Append Point option and
the p command (the visual effect for each of the commands is shown to the right of each
command):

- mged>p 500 –500 150

- mged>p -500 –500 250

- mged>p -500 500 350

- mged>p 500 500 450

- mged>p 500 –500 550

 45

- mged>p -500 –500 650

- mged>p -500 500 750

- mged>p 0 500 800

The raytraced image of the coil segment is shown in Figure A-5.

Figure A-5. Raytraced coil segment.

 46

Important Points to Remember About the Pipe
• Even the end points of a pipe have a bend radius (although it is not used

unless the point is changed to an interior point).

• Each bend radius value must be greater than half the value of its
corresponding outer diameter.

• The pipe primitive does not have to be used for hollow tubes. The inner
diameter can be 0, making the object solid.

• The bend radius at each point constrains the pipe in such a way that the path
of the pipe often touches only end points, not those in between.

• BRL-CAD will not allow points to be added, deleted, or moved if the result
of such actions would create pipes with mathematically invalid
characteristics.

• Points may not be coincident; they must be offset by at least 0.0001 mm.

• When modeling a tube with fluid inside of it, model both the tube and fluid
as solid pipes and subtract the fluid from the tube.

 47

Appendix B: Using the Projection Shader

B.1 General

Though the U.S. Army Ballistic Research Laboratory - Computer-Aided Design (BRL-CAD)
package has the capability to model highly detailed and complex surfaces of objects, such as the
multitude of small chips, connectors, and other electrical components on a circuit board (see
Figure B-1), individually building each piece of a complex surface is often labor intensive, time
consuming, and unnecessary for the model’s intended purpose. Thus, the package offers an
alternative, the projection shader, to create realistic-looking “skin” for objects.

Figure B-1. The many components of
a circuit board.

As its name implies, the projection shader projects an image onto a surface. Unlike the texture
shader, however, which fits an image to all available surfaces (stretching/shrinking as necessary),
the projection shader projects the image with user-defined dimensions and orientations.

There are several ways that advanced users can implement and customize the projection shader
in BRL-CAD. The average user can reduce the complexity of the process, however, by
complying with the following three basic rules of thumb:

1. the image to be projected should be square,

2. the geometry window (minus the toolbar and borders) should be square, and

3. the projected image should exactly fill the framebuffer.

 48

The following list identifies the basic tasks needed to use the projection shader:

• create/obtain an image to project,

• resize the graphics display window or image so that their dimensions match each other,

• ensure the framebuffer is active,

• display the image in the framebuffer of the graphics display window,

• align the image on the geometry by modifying the view parameters,

• save the projection shader settings file,

• apply the shader settings file to the object in the combination editor, and

• render the image.

Each of these steps is discussed in the following paragraphs using the example of the previously
mentioned circuit board.

B.2 Create/Obtain an Image to Project

The first step in using the projection shader is to create or obtain the image to be projected. The
image can be a pre-existing picture file, or it can be created specifically for the projection. In
this case, we took a photograph of the circuit board with a digital camera and used a
commercially available PC image editor to make the image square. When finished, we saved the
image as a .jpg file, with the name circuit_back_950.jpg. (Note that it is wise to include
the image dimensions [i.e., 950 pixels wide × 950 pixels high] in the file name because many
projection shader tasks rely on them.) To get the image into a BRL-CAD-accepted format (see
tutorial box that follows), we converted the .jpg file to a .png file using an image editor and then
the .png file to a .pix file using the BRL-CAD png-pix utility. For more information on this
utility, consult the man page.

BRL-CAD recognizes several image file formats, including .pix, .png., and
.ppm. Because the package relies on precise color values to perform certain
calculations, it does not support lossy file formats (e.g., .jpg), which are
based on algorithms that can alter or lose image/color data.

B.3 Resize the Graphics Display Window to Match Image Dimensions

The next step is to “prepare” the area on which the image will be displayed so that it is ready for
the image. For the circuit board, the size of the photograph was 950 pixels × 950 pixels high.
To make the graphics display window match, we opened the Raytrace Control Panel and used

 49

the numbers in the Size window box as a reference to determine how much to enlarge/shrink the
graphics display window (by using the mouse to drag the window borders in or out) (see
Figure B-2).

Figure B-2. Using the Raytrace Control Panel to size the graphics window.

Note that the Raytrace Control Panel (specifically, the Size field) is used here
simply to report the result of the user scaling the dimensions of the graphics
display area. It is not used to set the desired dimensions (in this case, 950
× 950) of the graphics area by inputting them into the Size field. Any numbers
input into this field will only determine the size of the display area in the next
raytrace.

Also note that some window managers have information boxes that
automatically report the size of the graphics display window as it is being
enlarged/reduced; however, the dimensions reported in these boxes often
represent the size of the entire window (including toolbars, borders, etc.) and
not the size of the framebuffer.

B.4 Ensure the Framebuffer is Active

A small but sometimes overlooked step before displaying any image onto the graphics display
window is to make sure the framebuffer is active. If it is not active, it may appear that nothing
happens when a display command is given. There are several ways to check the status of the
framebuffer. We went to the Settings pull-down menu in the graphical user interface, selected
Framebuffer, and made sure the box next to the Framebuffer Active option was toggled on.

B.5 Display the Image in the Graphics Display Window

After the graphics display window has been prepared and the framebuffer checked/set, the image
can be displayed in the graphics window. To do this, we entered the following command:

As the graphics
display window is
scaled, these numbers
report the size of the
display area (minus
the toolbar and
window borders).

 50

pix-fb -F0 -s 950 circuit_back_950.pix

Diagrammed, the command breaks down as follows:

pix-fb -F0 -s 950 circuit_back_950.pix

Send a .pix file
to a framebuffer.

Use framebuffer
number 0.

Make it a square
image.

950 pixels wide
and high.

Use the image file named
circuit_back_950.pix

For more information on the pix-fb command (including a list of other options the command
takes), type pix-fb on the command line or consult the man page.

Note that framebuffers use transmission control protocol (TCP) ports for
applications. The framebuffer number that follows the –F option specifies an
offset from the TCP port number. Framebuffer 0 is on port 5558. If 0 is
already in use, the Multi-Device Geometry Editor (MGED) will use the next
available framebuffer number (e.g., 1, 2, 3, etc.). To determine which port
MGED is actually using, type “set port” from the MGED command prompt.

B.6 Overlay the Image on the Geometry by Modifying the View Parameters

With the image and the target geometry displayed, edit the view parameters so that the image is
aligned with the geometry on which it is to be projected. In our case, we used the Shift-Grips to
scale and translate and the ae command to adjust the azimuth, elevation, and twist of the circuit
board wireframe so that its outside edges lined up with the outside edges of the projected image
(see Figure B-3). (For a refresher on the functionality of the Shift-Grips, consult chapter 2,
Volume II, of the BRL-CAD Tutorial Series.1)

B.7 Save the Projection Shader Settings File

After the geometry and image have been aligned, the projection settings (i.e., image file name,
image width, image height, and current view parameters) can then be saved to a file using the
prj_add command. The prj_add command appends the image file name and the current view
parameters to the shader file. In our case, the command was:

prj_add circuitboard.prj circuit_back_950.pix 950 950

Diagrammed, this command breaks down as follows:

prj_add circuitboard.prj circuit_back_950.pix 950 950

Add the projection file
name and parameters
to the shader.

Name the shader
circuitboard.prj

Use image file
circuit_back_950.pix

Make the image
950 pixels wide.

Make the image
950 pixels high.

1Butler, L. A.; Edwards, E. W.; Schueler, B. J.; Parker, R. G.; Anderson, J. R. BRL-CAD Tutorial Series: Volume II –

Introduction to MGED; ARL-SR-102; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2001.

 51

Figure B-3. Fitting the geometry view to the image dimensions.

B.8 Apply the Shader Settings File to the Object in the Combination Editor

The projection now needs to be applied to the object. We did this by opening the combination
editor, typing in the region name cir.r1 in the Name field, and selecting Projection from the
pull-down menu to the right of the Shader field. We then typed circuitboard.prj in the
Parameter File field and pressed Apply (see Figure B-4). Note that when the name of the
shader file is typed into the Parameter File field, the same information is echoed into the
Shader field.

B.9 Render the Image

The final step in using the projection shader is to raytrace the object to determine if all the other
steps have been performed correctly. In our case, rendering the image identified several
problems that we wanted to correct. First of all, as shown in Figure B-5, the holes in the board
failed to convey the three-dimensional look we desired. So, we went back and modeled circular
cutouts (using cylinder primitives) to improve the appearance. In addition, the rendered image
revealed that the image we were using was too dark. So, we ended up adjusting the gamma
setting on the original image (a .jpg file) in an external photo editor.

Note the red
wireframe. The
view of the
geometry has been
scaled to match the
outline of the image.

 52

Figure B-4. Applying the shader settings with the combination editor.

Figure B-5. Original image (left) and image with circular cutouts (right).

B.10 Repeating the Steps to Project the Image on the Front

After one side of the circuit board was finished, we proceeded to repeat the steps to add more
projection parameters to the .prj file and thus project a different image onto the front side of the
geometry (see Figure B-6). To do this, we once again had to acquire an image, properly size the

Click to view the
Boolean operations.

 53

Figure B-6. The projection shader applied to the
front of the circuit board.

geometry window, display the image and the geometry to the geometry window, and set up view
parameters. After this was done, these parameters could be added to the existing .prj file by
typing the following:

prj_add circuitboard.prj circuit_front_950.pix 950 950

Figure B-7 shows the resulting prj file. (Note that the first projection is on top and the second
projection is on the bottom.)

 54

Figure B-7. The circuit board .prj file.

circuitboard.prj

image="circuit_back_950.pix" image name
w=950 image width
n=950 image height
through=0 project through/onto surf. (1, 0)
antialias=1 (1,0) toggle antialiasing
behind=0 no color behind projection plane
viewsize=93.3
eye_pt=-96.65,-0.8,22.7 model space parameters
orientation=0.5,-0.5,-0.5,0.5
image="circuit_front_950.pix"
w=950
n=950
through=0
antialias=1
behind=0
viewsize=92.8
eye_pt=96.4,-0.35,20.9
orientation=0.503261759816,
0.496716821848,0.503261759816,0.496716821848

2nd
Proj.

1st
Proj.

 55

Appendix C: Using the Extruded Bitmap Primitive

The extruded bitmap (ebm) primitive allows the user to make a three-dimensional (3-D) shape
from a two-dimensional black-and-white image. This feature can be helpful when dealing with
complex outlines, text, or other complicated shapes captured as images.

For example, the ebm could be used if one wanted to model 3-D letters, such as in a company
name, onto the side of a simulated wall or building. Note also that the same image used for the
projection can, with some extra processing, form the basis for the ebm (see Figures C-1–C-3).

Figure C-1. Example of the .bw Figure C-2. Example of ebm.
image used for ebm.

Figure C-3. Example of the ebm
with projection
shader added.

 56

To make an ebm, the image file must be a black and white (.bw) file. A .bw image is a grayscale
raw image file with only one channel. Each pixel can be turned on or off, but it has no color
data. As shown in Figures C-2 and C-3, the white part of the image may be extruded in a straight
line in the +Z direction to whatever length the user specifies. Regardless of the complexity of
the geometry, all of the extruded shapes form a single ebm primitive.

To enter an ebm in a database, the in command must be used. The arguments are as shown in
the following example:

in sample.ebm ebm image.bw 600 800 1

Make a
shape.

Name it sample. Make it
an ebm.

Use the
image.bw
image file.

The image
is 600
pixels
wide.

The image
is 800
pixels
high.

Extrude the shape 1 inch
(or whatever working
units are in effect at the
time) in the +Z direction.

Points to Remember About the ebm
• The ebm cannot be created with the make, create, or inside commands.

• The desired width and height of the ebm are input as pixel values, but the
extrusion distance can be expressed in any working units.

• Extrusions are made in the +Z direction, although after an ebm is made,
the shape can be rotated, translated, or scaled.

• When extruded, all shapes form a single ebm primitive.

 57

Appendix D: Setting Up a .mgedrc File

Similar to the preferences or settings options in other computer applications, the .mgedrc file is a
useful tool to customize the look and functionality of the U.S. Army Ballistic Research
Laboratory - Computer-Aided Design (BRL-CAD) package and minimize potentially time-
consuming actions. Using Multi-Device Geometry Editor (MGED) commands and the Tcl/Tk*
scripting language, users can modify default settings, specify features to be toggled on or off
whenever MGED is started, establish typing shortcuts for a command or a series of commands,
locate and size the command and geometry windows, and perform a host of other
customizations.

The command to create/update a .mgedrc file with the graphical user interface (GUI) is found
under the File drop-down menu. When the Create/Update .mgedrc command is called, it
writes an extensive list (~500 lines) of default settings and comments representing the default
state of the command and graphics windows.

As shown in Figure D-1, there are two basic parts to a .mgedrc file: (1) the information before
the MGEDRC_HEADER and (2) the information after the MGEDRC_HEADER. The
information before the header is any text created by the user. The information after the
MGEDRC_HEADER is written by the Create/Update .mgedrc command and is a
comprehensive list of the default settings and options for the MGED user interface. If any edits
are made to the .mgedrc text after the header, these changes will be overwritten by the default
settings if the Create/Update .mgedrc command is called again. The information before the
HEADER, however, is not changed.

Remember that when creating/updating .mgedrc files, if any
conflicting/repeated commands are found, BRL-CAD “obeys”
the last command listed.

In Figure D-1, note that lines have been added before the header to show different raytracing
options and the commands have been sectioned into functional divisions separated by comment
fields (comment fields are denoted by the symbol “#”).

Each command includes the following four basic components:

*The Tool Command Language/Toolkit (Tcl/Tk) is an easy-to-learn interpreted programming language that can be used to

extend/customize BRL-CAD functionality. Users are encouraged to consult one of the many texts on Tcl/Tk syntax and use,
including Practical Programming in Tcl and Tk (Welch, B. Third Edition; Prentice Hall: Upper Saddle River, NJ, 1999) and
TCL/TK in a Nutshell (Raines, P.; Tranter, J. O’Reilly & Associates, Inc.: Sebastopol, CA, 1999).

 58

IMAGING ##
proc 256 {} {rt -s256}
proc 256w {} {rt -s256 -C255/255/255}
proc 256a {} {rt -s256 -A.7}
proc 256wa {} {rt -s256 -C255/255/255 -A.7}

VIEWS ##
proc 145 {} {ae 145 25}
proc 215 {} {ae 215 25}

MISC ##
proc acc {} {press accept}
proc smk {newprim primtype} {make $newprim $primtype; sed
$newprim}
proc scp {oldprim newprim} {cp $oldprim $newprim; sed
$newprim}
############### MGEDRC_HEADER ###############
You can modify the values below. However, if you want
to add new lines, add them above the MGEDRC_HEADER.
Note - it's not a good idea to set the same variables
above the MGEDRC_HEADER that are set below (i.e. the last
value set wins).

Activate/deactivate globbing against database objects
set glob_compat_mode 1

Used by the opendb command to determine what version
of the database to use when creating a new database.
set mged_default(db_version) 5

Used by the opendb command to determine whether or
not to warn the user when reading an old style database.
0 - no warn, 1 - warn
set mged_default(db_warn) 0
.
.
.

Figure D-1. The two basic parts of the .mgedrc file: (1) information before header, and (2) information
after header.

(1) the “proc” (procedure) prefix,

(2) a unique name,

(3) arguments, and

(4) the body (i.e., commands that MGED should execute).

The symbol “;” signifies command separation (a return), and the symbol “$” inserts the value of
the subsequently named variable.

 59

The following text discusses some specific examples of the type of shortcuts that can be created
by users to expedite common operations such as executing raytraces with particular parameters,
accepting and rejecting edits, setting azimuth and elevation, etc.

First, the command to execute a specific kind of raytrace can often be long and tedious to type.
For example, if a user wanted to render an image in a window 256 pixels high and wide, with a
background color of white, and with the ambient light set to 0.7, the following text would have to
be typed:

rt -s256 -C255/255/255 -A.7

However, it is a simple matter to add a line to the user’s .mgedrc file to automate the calling of
this instruction. The user’s line might be as follows:

proc 256wa {} {rt -s256 -C255/255/255 -A.7}

Diagrammed, this line breaks down as follows:

proc 256wa {} {rt -s256 -C255/255/255 -A.7}

Denotes that a Tcl
procedure is
being created.

Names the
procedure
256wa.

Denotes that
there are no
arguments.

Denotes the MGED command that will be executed.
The rendering will be 256 pixels square size (as
signified by -s), will have a background red-green-
blue value of 255 255 255 (as signified by the -C
option), and will have an ambient light setting of 0.7
(as signified by the -A option).

Now, all the user has to type on the command line to execute a rendering with the previously
listed options is the following procedure name:

256wa

Note that this name has been intentionally kept short and function-based. It reduces a
27-character command to a 5-character command and provides the user with an idea of the
action it performs. The 256 stands for the rt square size, the w stands for a white background,
and the a stands for ambient lighting. But this convention is just a suggestion. The user may
choose any name that is unique and does not contain words that are reserved for MGED
commands (e.g., create).

The .mgedrc file can also be used to create shortcuts for other types of command line or GUI
commands. For example, the syntax for creating a shortcut for accepting and rejecting edits
from the command line might be as follows:

proc acc {} {press accept}

proc rej {} {press reject}

In addition, a possible shortcut for calling a standard viewing geometry might be as follows:

proc 145 {} {ae 145 25}

 60

And to save the extra selection step when making or copying a primitive, the respective
procedure syntax for combining the make and sed commands and copy and sed commands
might be as follows:

proc mks {newprim primtype} {make $newprim $primtype; sed $newprim}

and

proc cps {oldprim newprim} {cp $oldprim $newprim; sed $newprim}

Figure D-2 shows a sample section of a .mgedrc file that allows the user to specify the command
line editor, customize the window size and placement, and toggle the function keys.

.
.
.
Sets the type of command line editing (emacs or vi)
set mged_default(edit_style) emacs

Size/Position of command window
width’x’height(+-)left/right offset(+-)up/down offset
e.g. set mged_default(geom) 750x400+8+32
750 width, 400 height, left edge of window 8 pixels
from the left side of the display, top edge of window
32 pixels from the top of the display
default settings do not specify a window size
set mged_default(geom) +8+32

Size/Position of geometry window
follows same format as command window
set mged_default(ggeom) -0+0

Activate/deactivate zclipping, F2
set mged_default(zclip) 0

Activate/deactivate perspective mode, F3
set mged_default(perspective_mode) 0

Activate/deactivate old mged faceplate, F7
set mged_default(faceplate) 1

Activate/deactivate old mged faceplate GUI, F8
set mged_default(orig_gui) 0
.
.
.

Figure D-2. Sample elements and functionality of a .mgedrc file.

Sets the editor for the
MGED command line
(Note this is not the
editor used in edcodes)

Sets size and
position of the
command and
geometry windows

Toggles function keys

 61

The diagrammed command for sizing and positioning the command window is as follows:

set mged_default (geom) 475 × 250 +65 +80

Sets MGED command
window defaults.

Specifies
command
window.

Sizes the window
width to 475 pixels
and the height to 250
pixels.

Denotes window location will be 65
pixels from the left side of the
display and 80 pixels from the top
edge of the display.

As illustrated in Figure D-3, to specify the window size, the user inputs width-by-height
dimensions for each window (i.e., 475 × 250). To specify the placement of the windows on the
display, the user specifies offset distances (i.e., +65 +80) from the edges of the display (as
measured in pixels). The first number defines the distance for the left/right placement, and the
second number is for the up/down placement. The “+” symbol indicates a distance from the left
side of the display to the left side of the window or from the top of the display to the top of the
window. Alternatively, if a “–“ symbol were present (as shown on the right side of Figure D-3),
it would indicate a distance from the right side of the display to the right side of the window or
from the bottom of the display to the bottom of the window.

Figure D-3. Sample window dimension input and positioning.

475 × 250 + 65 + 80

512 × 250 – 0 – 60

425 × 340 – 50 + 40

+80

+65 –50

+40

–60

–0

 62

INTENTIONALLY LEFT BLANK.

 63

Appendix E: Using the Build Pattern Tool

E.1 General Pattern Information

As mentioned previously, the Build Pattern tool automates the process of making copies of
existing geometry in rectangular, spherical, or cylindrical patterns. The user can choose to
pattern at any of three depths of duplication: top, regions, and primitives.

The Build Pattern tool is run from the graphical user interface (GUI) (under the Tools menu); it
currently has no command-line equivalent. The bottom of the pattern control GUI is a usage
dialog box that lists pertinent information about each item on the GUI as the user mouses over
the text.

There are many input fields. Some stand alone, and others belong to series that work together to
provide the needed information for a specific option. Each series is demarked by a diamond-
shaped check box. If the diamond is highlighted red, then all fields in that series are required.
All required fields must be filled in for the pattern tool to work properly. It is also important to
note that all dimensions must be in millimeters and that no commas should be used in number
strings.

The Build Pattern tool is designed to work from a prototype geometry object. That is to say, the
object that is patterned is not included in the resultant pattern.

E.2 Pattern Names

As shown in Figure E-1, the tool appends three numbers to all patterned objects (unless you are
using the increment option for primitives, in which case, the numbers for regions and primitives
are incremented by the increment amount). For rectangular patterns, the first number is the
X axis offset, the second is the Y axis offset, and the third is the Z axis offset. For spherical
patterns, the first number references the azimuth, the second references the elevation, and the
third references the radii. For cylindrical patterns, the first number references the radii, the
second number references the height, and the third number references the azimuth.

E.3 Common Fields for all Patterns:

There are several fields in the pattern tool GUI that are common to all types of patterns.

The Group Name field is for the name of the combination to be created (or appended to) by a
pattern call.

The Source String and Replacement String fields must be used together. The source string is
the set of characters in each element of the patterned object to be changed. The replacement
string is the set of characters that will replace the source string.

 64

Figure E-1. Example of pattern-generated assembly names.

The Increment field is only for use when duplicating to the primitive level. It is added to the
leftmost number field of each primitive. To determine the increment, examine the primitives of
the object(s) you wish to pattern and find the largest span. For example, to create a pattern to the
primitive level with the following primitives (which may or may not be in regions or
assemblies),

part.s22 part.s22-1 part.s23 part.s24 part.s24+1 part.s24-1 part.s25,

one needs to determine the span. Note that the leftmost numbers in these primitives range from
22–25. Thus, as shown in the following expression, the span is four (inclusively).

22 23 24 25

1 2 3 4

If we use an increment of four, we will get the following set of primitives.

part.s26 part.s26-1 part.s27 part.s28 part.s28+1 part.s28-1 part.s29

Although it is acceptable to use a greater increment, gaps in numbers may be troublesome if one
is using this capability extensively.

Finally, the Objects field is used for the names of all the items to be patterned.

E.4 String Substitution

It is also possible to create a pattern in which a string of characters in each element in the object
is changed (e.g., “l_” “r_”). This is useful for symmetry applications (e.g., left – right) or
series (e.g., 1 – n). Each element of the object must have the source string so the user must be
thorough and name each primitive, region, and assembly properly. Consider the following
example:

 65

Top-level duplications copy the patterned object and reference its entire structure with matrices,
as follows:

/pattern group
/COPIED assemblies [MATRICES]

/assemblies
 /regions
 /primitives

Region-level duplications copy all assembly and regions and reference from the region level
down with matrices.

/pattern group
/COPIED assemblies

/COPIED regions [MATRICES]
/primitives

Primitive-level duplications copy the entire tree structure to the primitive level without matrices
using an increment on all primitives.

/pattern group
/COPIED assemblies
 /COPIED regions

 /COPIED primitives

E.5 Rectangular Patterns

The rectangular pattern GUI (shown in Figure E-2) is designed to facilitate one-, two-, or three-
dimensional rectangular patterns. The default X, Y, and Z directions are positive along each
axis. In order to create a rectangle that is not axis aligned, these vectors may be changed with
the condition that each must remain precisely perpendicular to the other two. If the Use
Directions series is checked, the user specifies the number of copies and the Delta between
copies for each axis. If the Use Lists series is checked, the user can specify a list of deltas along
each axis.

NO MATRICES

Patterns
to

l_headlight
 l_headlight_case
 l_hdlgt.r1
 u l_hdlgt.s1
 u l_hdlgt.s2
 - l_hdlgt.s2-1
 l_headlight_bulb
 l_hdlgt.r2
 u l_hdlgt.s3
 + l_hdlgt.s3+1

r_headlight
 r_headlight_case
 r_hdlgt.r1
 u r_hdlgt.s1
 u r_hdlgt.s2
 - r_hdlgt.s2-1
 r_headlight_bulb
 r_hdlgt.r2
 u r_hdlgt.s3
 + r_hdlgt.s3+1

 66

Figure E-2. The user interface for building rectangular patterns.

E.6 Spherical Patterns

The spherical pattern GUI (shown in Figure E-3) facilitates sphere-shaped patterns rotated
around a center vertex using user-specified radii with azimuth and elevation angles. As shown in
Figure E-4, the patterned objects—in this case, a series of arrows—may be oriented as built
around the sphere or rotated by azimuth and/or elevation such that they are oriented toward the
pattern center using the Rotate Azimuth and Rotate Elevation check boxes.

As shown in Figure E-4, the Pattern Center field is the coordinate at the center of the pattern.
The Object Center field is a user-defined coordinate used to locate the object(s) relative to the
pattern center. It acts as the key point for any transformations to the pattern object(s).

The Starting Azimuth and Starting Elevation fields follow the same right-hand-rule Cartesian
coordinate conventions as Multi-Device Geometry Editor (MGED) viewing. The Starting
Radius is the distance from the Pattern Center to the object center at the user-specified
azimuths and elevations.

If the Create Az/El series is checked, the user defines the number of azimuths and elevations
and the deltas between each. If the Use Lists series is checked, the user must specify a list of
azimuths and/or elevations.

The Create Radii and Use Radii List series define offsets from the Starting Radius, allowing
the user to create a pattern of concentric spheres. If Create Radii is checked, the user specifies

 67

Figure E-3. The user interface for building spherical patterns.

the Number of Radii and the Radius Delta in order to construct a number of equally offset
sphere patterns. If the Use Radii List is checked, the user specifies a list of radius offsets.

Without the Rotate Azimuth or Rotate Elevation boxes checked, the patterned objects are
oriented as built without any rotations. Notice, for example, that every arrow in Figure E-5
points to the left. Notice also that for each patterned arrow, the Object Center (here specified as
the tip of the arrow) is located on the circle outline at a distance of one Starting Radius from the
Pattern Center. If we set the Object Center to the coordinate at the base of the arrow, the base
would then lie on the circular outline. Wherever the Object Center is set is the point at which
MGED works with the Object Center coordinate to place and rotate patterned objects.

 68

Figure E-4. Examples of different spherical pattern orientations.

 69

Figure E-5. Implementation of spherical patterns.

Pattern Center

Starting Radius

Arrow

Pattern Object

Object Center

The Object Center is the
coordinate that the user
defines relative to the
Pattern Object as the
key point reference for
translations and rotations.

 70

E.7 Cylindrical Patterns

The cylindrical pattern GUI (shown in Figure E-6) facilitates the creation of cylinder-shaped
patterns with user-defined center, direction, height, azimuth, and radii inputs. The Base Center
is the vertex of the cylinder shape. The Object Center is a user-defined coordinate used to
locate the object(s) relative to the Base Center and Height Direction. It acts as the key point
for any transformations to the pattern object(s). The Height Direction is the vector along which
the cylinder runs. The Starting Height is the offset from the Base Center along the Height
Direction that the pattern will place the Object Center.

Figure E-6. The user interface for building cylindrical patterns.

 71

Appendix F: Using the build_region Command

Just as the Build Pattern tool can help automate the process of building multiple occurrences of
objects, the build_region command can help automate the process of creating regions. The
command (which currently has no graphical user interface equivalent) uses meaning assigned by
the user in the primitive name based on the intended use of the primitive.

The user includes the Boolean operation and relational information in the name of the primitive
using a simple naming convention. The naming convention is designed around the following
two assumptions:

1. The same text “tag” is used for all primitives in a region.

2. A sequential numbering pattern is used.

For example, let’s say we want to build the four rounded corners of a “tub” region for a toy metal
wagon assembly (see Figure F-1). We could choose something such as “wgn”—an abbreviated
form of “wagon”—as the tag. This tag is short, easy to type, and representative of the final
assembly name. Our primitives would therefore be of the form wgn.s#.

Figure F-1. The rounded corners of a toy wagon.

Next, we create an arb8 for one long side of the wagon tub. It is named wgn.s1. After that, we
create an rcc for one corner of the tub. It is named wgn.s2. To get a hollow quarter cylinder, we
need to subtract a cylinder and intersect a bounding box (see Figure F-2). In order to relate the
subtraction and intersecting primitives with wgn.s2, they will each share the same root name,

 72

Figure F-2. Arb8, cylinder, and two Boolean primitives.

wgn.s2. The subtraction primitive will be named wgn.s2-1, and the intersecting primitive will be
named wgn.s2+1.

Now we have created the following four primitives:

wgn.s1 wgn.s2 wgn.s2+1 wgn.s2-1

If we separate the primitives sequentially as follows,

wgn.s1

wgn.s2 wgn.s2+1 wgn.s2-1,

we can begin to see the Boolean structure falling out of the naming convention

u wgn.s1

u wgn.s2 + wgn.s2+1 - wgn.s2-1

If we wanted to make a second subtraction from wgn.s2—say, for a drain hole in the corner of
the wagon—we would name that primitive wgn.s2-2 (see Figure F-3). We can break this name
down as follows:

Union primitive
wgn.s2 used to round
the corner of the
wagon basin.

Root Primitive Second Subtraction

Boolean Operation

wgn.s2 - 2

 73

Figure F-3. The region and the subtraction primitives.

Note that the root name stays the same so we can maintain the relationship, and the second
number (associated with the Boolean operation) is incremented sequentially.

Figure F-4. Raytraced image with hole.

Subtraction primitive
wgn.s2-2 used to cut
a hole in the rounded
corner.

 74

Obviously, the overall success or failure of the build_region command depends on primitives
being named properly. But if they are, the command can organize them in one automated step,
creating complex regions in just a few keystrokes.

Another modeling benefit of the build_region tool is that it allows the user to quickly organize
primitives. Assume, for example, that we have used the aforementioned naming convention to
construct a complicated region. If there was a subsection of the region that we needed to, say,
keep out for another assembly, delete from our database, move slightly, or copy, it would be a
simple matter to create a new region with just those primitives that we needed.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1

 2 DEFENSE TECHNICAL
 INFORMATION CENTER
 DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 2 DIR USARL
 AMSRL CI LP (BLDG 305)
 AMSRL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 2

 1 OASD C3I
 J BUCHHEISTER
 RM 3D174
 6000 DEFENSE PENTAGON
 WASHINGTON DC 20301-6000

 1 OUSD(AT)/S&T AIR WARFARE
 R MUTZELBURG
 RM 3E139
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20301-3090

 1 OUSD(AT)/S&T LAND WARFARE
 A VIILU
 RM 3B1060
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20310-3090

 1 UNDER SECY OF THE ARMY
 DUSA OR
 ROOM 2E660
 102 ARMY PENTAGON
 WASHINGTON DC 20310-0102

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECHLGY
 SAAL ZP ROOM 2E661
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECHLGY
 SAAL ZS ROOM 3E448
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 DIRECTOR FORCE DEV
 DAPR FDZ
 ROOM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRL SL M
 J PALOMO
 WSMR NM 88002-5513

 1 USARL
 AMSRL SL EA
 R FLORES
 WSMR NM 88002-5513

 1 USARL
 AMSRL SL EI
 J NOWAK
 FT MONMOUTH NJ 07703-5601

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 APG MD 21005-5055

 1 US ARMY EVALUATION CENTER
 CSTE AEC SVE
 R BOWEN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CENTER
 CSTE AEC SVE S
 R POLIMADEI
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CENTER
 CSTE AEC SV L
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 13 DIR USARL
 AMSRL SL
 DR WADE
 J BEILFUSS
 AMSRL SL B
 P TANENBAUM
 J FRANZ
 L WILSON
 AMSRL SL BB
 M RITONDO
 S JUARASCIO
 D FARENWALD
 AMSRL SL BD
 J MORRISSEY

NO. OF
COPIES ORGANIZATION

 3

ABERDEEN PROVING GROUND (CONT)

 AMSRL SL BE
 L ROACH
 AMSRL SL E
 M STARKS
 AMSRL SL EC
 J FEENEY
 E PANUSKA

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 4

 1 NAWC
 WEAPONS DIVISION
 CODE 418300D A WEARNER
 BLDG 91073
 1 ADMINISTRATIVE CIRCLE
 CHINA LAKE CA 93555-6100

 1 AIR FORCE ARMAMENT CNTR
 AAC/ENMA
 D MCCOWN
 101 W EGLIN BLVD
 EGLIN AFB FL 32542-5549

 1 USAF
 46 OG OGMLV
 B THORN
 104 CHEROKEE AVE
 EGLIN AFB FL 32542-5600

 1 USAF WRIGHT LABORATORY
 46TH OG OGM AL AC
 M LENTZ
 2700 D STREET BLDG 22B
 WRIGHT PAT AFB OH
 45433-7605

 1 SURVIAC
 ABERDEEN SATELLITE OFC
 A LAGRANGE
 4695 MILLENNIUM DRIVE
 BELCAMP MD 21017-1505

 6 THE SURVICE ENGNRG CO
 E EDWARDS
 D KREGEL
 C BOYER
 M HARDIN
 M BUTKIEWICZ
 L MCKAY
 4695 MILLENNIUM DRIVE
 BELCAMP MD 21017-1505

ABERDEEN PROVING GROUND

 4 DIR USARL
 AMSRL CI LP (305)

 177 DIR USARL
 AMSRL SL
 DR WADE
 J BEILFUSS
 C HARDIN
 AMSRL SL E
 M STARKS
 D BAYLOR
 AMSRL SL EC
 E PANUSKA
 AMSRL SL EM
 J FEENEY
 AMSRL SL B (5 CPS)
 AMSRL SL BB (75 CPS)
 AMSRL SL BD (15 CPS)
 AMSRL SL BE (25 CPS)
 L BUTLER (50 CPS)

