Getting Help

With non-classic MGED, right-clicking most labels and input fields will provide a description Additionally, documentation is provided via the Help menu and on-line at http://brlcad.org/
obtaining help on all commands obtaining help on a particular command search for commands that relate to keyword display command history for current session record transcript of commands used to file help help command apropos keyword history journal file list subset of various simulatable GUI actions press help

Geometry Information

list the top-level objects list the objects in currently open database get a table of contents for current database display the information details for object(s)
get/set title of currently open database get/set units of currently open databas print out CSG hierarchy for object(s) display combinations that reference object display full paths that reference object(s) list all CSG paths under given object(s) show transformation matrices along a path list all regions referenced by object(s) display all regions with given air code(s) display counts of primitives, regions, groups save region identifier summary to file

tops

ls
t
l obj....
title
units
tree obj ...
dbfind obj ...
dbfindtree obj... paths obj ... showmats path get_regions obj .. eac code... summary prg idents file obj...

Creating Geometry

interactively type in new object parameters create a prototypical primitive object create a CSG combination object
create CSG region (aka "part") combination create group (aka "assembly") combination create a region from a range of solids create a shallow copy of an object create deep patterned copies of objects rename an object
rename an object and all references add a prefix to all references to an object create an arb8 with rotation and fallback duplicate a cylinder, positioned at end or oris make a bounding box around object(s)

in

make type name comb name op obj c name obj op obj...
r name op obj.
g name obj1 obj2 ..
build_region prefix \# cp obj objcopy clone
mv old new mvall old new prefix prefix obj arb rot fallback cpi cyl cylcopy make_bb name obj mirror an object about the x, y, or z axis mirror obj new axis create arb given 3 points, 2 coords of 4 th, and thickness 3ptarb

Deleting Geometry

MGED provides no direct means to recover deleted geometry, so delete objects with caution. Regularly performing geometry database backups (e.g. see the 'dump' command) is recommended.

delete object(s) from database	kill obj ...
delete object(s) and all references	killall obj ...
delete object(s), all sub-objects, all references	killtree obj ...

Displaying Geometry

display object(s) for editing
erase object(s) from the display
erase any objects that reference object(s)
"zap": clear all objects from the display blast": clear all objects \& display object(s) mark object(s) as "hidden" to hide from ' $1 s$ s' unmark object(s) as "hidden"
hierarchical geometry browser GUI tool
e obj ...
draw obj ..
d obj ..
erase obj ...
dall obj..
erase_all obj ..
z
B obj ...
hide obj ... unhide obj ...
geometree

Rendering Geometry

raytrace current view to a lingering window rt $-F / \operatorname{dev} / X 1$ raytrace current view to 2048×2048 file $\begin{array}{lll}\text { raytrace current view to } 2048 \times 2048 \text { file } & \text { rt }-s 2048 \text {-o file.pix } \\ \text { raytrace white background hidden-line image } & \text { rtedge }-W \text {-o file.pix }\end{array}$ abort any raytraces started within mged rtedge -W -o file.pix rtabort

Customization

MGED will process a ".mgedrc" initialization file in your home directory as a sourced Tcl script. his file generally contains defaults set by the GUI but may also include your own customizations including new commands, shortcuts, loadable plugin modules, and custom key bindings.

Text File \& Table Editing

Several commands in MGED utilize an external text editor, determined from your environment EDITOR setting, to edit object values. Depending on your shell, you may need to set your E
edit a combination using a text editor edit the region identifier codes for object(s) edit the combination/region materials print the color table
edit the color table codes
read/import region identifier codes from file write region identifier codes to file read combination materials from file write combination materials to file write report of primitive solids to file

Manipulating the View

get/set the various view parameters automatically resize/recenter the view redraw the current view set the azimuth, elevation, and twist set/get the view center set/get the eye point set/get the viewing direction set/get the view size zoom the view by specified scale factor set the perspective viewing angle translate/move the view relative to current scale the view size by given factor rotate the view by $\mathrm{x}, \mathrm{y}, \mathrm{z}$ degrees rotate view about a specified model vector rotate viewpoint by specified degrees set view using direction and twist angle set view using $\mathrm{x}, \mathrm{y}, \mathrm{z}$ angles in degrees pan the view
set the view orientation from quaternion emulate a knob twist control the angle/distance cursor save the current view orientation to a file load a saved view orientation from a file save current wireframe to a Postscript file save current wireframe to a UNIX plot file overlay a UNIX plot file onto the display

Analyzing Geometry

analyze the faces of an ARB rough estimate of presented area trace single ray from current view or $\mathrm{x}, \mathrm{y}, \mathrm{z}$ trace single ray from x , y position get/set query_ray behavior settings check for overlaps (aka interferences) compute view-dependent surface areas get/set MGED calculation tolerances
red comb
edcodes comb... edmater comb ... prcolor edcolor rcodes file wcodes file obj rmater file wmater file obj.. solids file obj ...

view

autovie

refresh
ae az el tw center x y z eye_pt $x y z$ lookat x y z
size size
zoom scale
set perspective angle tra $d x d y d z$
sca factor
rot $x y z$
mrot x y z
vrot xdeg ydeg zdeg qurot $d x d y d z$ angle setview xdg ydg zdg sv $x y$ orientation quat knob params adc saveview file.rt loadview file.rt ps file.ps plot file.pl overlay file.pl

analyze arbname

nirt $x y z$
vnirt x y
qray
rtcheck
rtarea
tol

Editing Geometry

MGED is a modal editor (akin to "vi") meaning that you have to enter and exit various editing modes. The primary mode states related to editing are VIEWING (default), SOLEDIT, and
visually illuminate \& select combination visually illuminate \& select solid primitive enter object-illuminate mode get the current editing state edit a primitive (enter solid edit mode) edit a matrix (enter object edit mode) add object reference to existing combination remove object reference(s) from combination set/get the center of editing transformation manipulate an object's matrix or material copy the matrix on one object to anothe select matrix path when in pick mode set a matrix on a given path
sill prim
press oill status state sed prim oed lpath rpath i obj comb rm comb obj ... keypoint x y z arced path cmd copymat path1 path2 matpick path1 path2 putmat path m0 ...m16 apply all matrix transformations down to the primitives push obj ... same as push but creates new primitives as needed xpush obj ...

The geometry editing commands below including the commands related to translation, scaling, and rotation require that MGED be in an edit mode before they can be utilized. The command implicitly apply to the objects currently selected (e.g. with 'sed' or 'oed') for editing.
set parameter(s) for current edit operation return to viewing mode, accept any edits return to viewing mode, rejecting any edits edit selected primitive using a text editor edit the face of selected arb interactively mirror selected arb face across x, y, or z axis permute the vertices of selected arb

p val

accept
reject
reje
ted
facedef face
mirface face axis permute 8vertices

Translating or Moving Geometry
move object being edited to relative position tra $d x d y d z$ move object being edited to absolute position translate $x y z$

Scaling or Resizing Geometry
scale primitive being edited
scale combination object being edited scale combination object being edited
extrude arb face by some absolute distance
sca factor oscale factor extrude face dist

Rotating Geometry

rotate primitive being edited
rotate combination object being edited rotate angle degrees about an arbitrary axis
rot $x y z$
orot $x y z$ arot $x y z$ angle incrementally rotate combination object
rotobj -i $d x d y d z$ rotate combination about vector qorot x y $z d x d y d z$ angle use provided planar coefficients when rotating arb face eqn A B C

BRL-CAD Coordinate Systems

BRL-CAD uses a right-hand 3D Cartesian coordinate system with real number addressing where "up" is in the positive z-axis $(+Z)$ direction, "left" and "right" are perpendicular to the $y-a x$ and "front" is towards the positive x -axis $(+\mathrm{X})$ direction.

BRL-CAD uses a first-quadrant 2D Cartesian coordinate system with integer addressing where $(0,0)$ is the lower-left corner

Attributes

In BRL-CAD geometry database files, "attributes" may be used to store arbitrary information, i.e. metadata, on an object. Attributes may be applied to any object in the database.
display current attributes for object(s) set the specified attribute on an object append the specified attribute value modify an object attribute(s) delete an object attribute interactively set visual material properties set object color (red, green, and blue values) get region identifier code for specified region list all regions using particular shader(s) dentify regions with specified air code(s) identify regions with specified region id(s) incrementally set region id on all regions referenced by object reid obj \# set material id on all regions referenced by object remat obj \#

Scripting New Commands in MGED with Tcl

echo, i.e. display or print, the provided text echo text pause for the specified amount of time delay sec usec get combination CSG structure as a Tcl list lt object use shell-style name globbing set glob_compat_mode 1 use Tcl shell syntax evaluation set glob_compat_mode 0

Here is an example of writing a custom command called 'get_primitives' that traverses over all objects in a given combination, printing a list of all primitives encountered. For this example, glob_compat_mode is disabled (i.e. set to 0 , not the default value of 1) so that there is no need to escape various characters with a preceding " " slash.

set glob_compat_mode 0

proc get-primitives
set children [object)
set
set prims ""
if (\$children ! $=\cdots \cdots$

foreach node Schildren
set name [1index \$node
set data [db get sname]
set data [db get sname]
if (11 index $\$$ sdata 0] $]="$ comb" ,
f [[1index $\$$ data 0$]!=$ "comb"
set prims [concat $\$$ Sprims $\$$ Sname]
set prims
else
els
set
set prims [concat \$prims [get_primitives \$name]]
\qquad
Copyright (c) 2006 United States Government
MGED Quick Reference Card version 4 for BRL-CAD version 7, June 2006 designed by Cbristopher Sean Morrison

Permission is granted to make and distribute copies of this card provided the copyright notice, the designed by notice, and this permission statement are preserved on all copies.

MGED Quick Reference Card

(for version 7.x)

Starting \& Stopping MGED

start MGED with default graphical user interface (GUI) mged run MGED in classic console mode mged -c open geometry database file creating new if necessary mged file.g run a single MGED command on database mged -c file.g cmd quit MGED exit or quit or q

Files

Geometry database files in MGED are always automatically saved to disk after an edit is made. As such, performing a file "Save" operation manually is not necessary and is not provided by MGED.
open a new or existing geometry database close any open geometry database save a copy of the currently open database export objects from currently open database check if file contains duplicate object names combine a geometry database into existing eliminate unused space from open database display version of currently open database
opendb file.g
closedb
dump newfile.g keep newfile.g obj dup file.g dbconcat file.g garbage_collect dbversion upgrade currently open database to the latest dbupgrade import data file as a binary object wdb_binary -i u c obj file export binary object to a data file wdb_binary -o u c file obj

BRL-CAD File Name Conventions

binary BRL-CAD geometry database files ascii BRL-CAD geometry database files (deprecated) raw binary headerless 3-channel color image data files raw binary headerless 1-channel grayscale image files extended UNIX 2D/3D color plot format files raytrace command saveview shell script (text) files

Geometry Naming Conventions

MGED imposes minimal restrictions on how geometric objects are named. It is up to the individuals and organizations to utilize consistent naming conventions when creating geometry. The below object naming suffix convention is frequently utilized and recommended.
groups / assemblies
no suffix or .g
regions / parts
.r
non-region combinations
.
primitive solid shapes
.s

Constructive Solid Geometry Operations

Constructive Solid Geometry (aka Combinatorial Solid Geometry) is based on three mathematical boolean operations: union, intersection, and difference (aka subtraction). These operators are applied to primitives to form compound objects in MGED using the "u", " + " and "-" notation. Consider the example of combining two primitive object shapes, \lfloor and \bullet. The example below shows the resulting CSG combination object when the two shapes are overlapping.

Difference

