Rev.	Author	Date	Summary of Changes
0.0	Matt S.	$07 / 12 / 2012$	Document created.

Contents

1 A Convoluted Strategy

Document No.	N/A	Author	Matt S.
Revision	0.0	Date	Dec. 2012

1 A Convoluted Strategy

Assume we have an elliptical hyperboloid, Ω, with it's vertex at some point in \mathbb{R}^{3} and axis aligned with some vector n. Via a series of three transformations-one translations and two rotations-we can relocate Ω such that the vertex is at $(0,0,0)$, with the axis of the cylinder coincident to the x^{3} axis, and the major and minor semi-axis of the elliptical cross section alligned with the x^{1} and x^{2} axis. The result is then something like the shape shown in Figure 1. Consider now an

Figure 1: Our Sample Elliptical Hyperboloid, Ω
elliptical cylinder Γ also centered at $(0,0,0)$, with a cross section that matches the top of Ω. We can then consider the shape $\Phi=\Gamma \backslash \Omega$, and to make life a little simpler we will only consider the the octant $\left\{x^{1}, x^{2}, x^{3}\right\} \geqslant 0$ and take advantage of the symmetry. We then have the shape illustrated in Figure 2. Consider now the hyperbolic surface of Φ. This surface can be descibed

Figure 2: $\Phi=\Gamma \backslash \Omega, x \geqslant 0$

Document No.	N/A	Author	Matt S.
Revision	0.0	Date	Dec. 2012

via the parametric functions

$$
x^{i}=f^{i}\left(u^{1}, u^{2}\right)
$$

where

$$
\begin{aligned}
& f^{1}\left(u^{1}, u^{2}\right)=a \cosh u^{2} \cos u^{1} \\
& f^{2}\left(u^{1}, u^{2}\right)=b \cosh u^{2} \sin u^{1} \\
& f^{3}\left(u^{1}, u^{2}\right)=c \sinh u^{2}
\end{aligned}
$$

Here, a, b, c correspond to the elliptical hyperboloid itself via the fact that Ω is defined via

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

and $u^{1} \in\left[0, \frac{\pi}{2}\right], u^{2} \in[0, \varphi]$. Note that we may deterimne φ from the height of Ω,

$$
h=c \sinh \varphi
$$

With this description in place, it's now a fairly straightforward exercise to determine the volume of Φ, which then allows to then determine the volume of Ω, since

$$
\Omega=\Gamma \backslash \Phi
$$

To actually deterimne the volume of Φ, we first determine the metric tensor $g_{i j}$. Let

$$
\begin{aligned}
a_{j}^{i} & =\frac{\partial f^{i}}{\partial u^{j}} \\
& =\left[\begin{array}{lll}
\frac{\partial f^{1}}{\partial u^{1}} & \frac{\partial f^{2}}{\partial u^{1}} & \frac{\partial f^{3}}{\partial u^{1}} \\
\frac{\partial f^{1}}{\partial u^{2}} & \frac{\partial f^{2}}{\partial u^{2}} & \frac{\partial f^{3}}{\partial u^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-a \cosh u^{2} \sin u^{1} & b \cosh u^{2} \cos u^{1} & 0 \\
a \sinh u^{2} \cos u^{1} & b \sinh u^{2} \sin u^{1} & c \cosh u^{2}
\end{array}\right] \\
\Rightarrow g_{i j} & =a_{i}^{k} a_{j}^{k} \\
& (k \text { summed }) \\
& =\left[\begin{array}{cc}
a_{1}^{1} a_{1}^{1}+a_{1}^{2} a_{1}^{2}+a_{1}^{3} a_{1}^{3} & a_{1}^{1} a_{2}^{1}+a_{1}^{2} a_{2}^{2}+a_{1}^{3} a_{2}^{3} \\
a_{2}^{1} a_{1}^{1}+a_{2}^{2} a_{1}^{2}+a_{2}^{3} a_{1}^{3} & a_{2}^{1} a_{2}^{1}+a_{2}^{2} a_{2}^{2}+a_{2}^{3} a_{2}^{3}
\end{array}\right]
\end{aligned}
$$

so that we may then compute the volume via

$$
V_{\text {compliment }}=\int_{B} \sqrt{\operatorname{det} g_{i j}} d u^{1} d u^{2}
$$

where

$$
B=[0, \pi / 2] \times[0, \varphi]
$$

and

$$
d u^{i}=\frac{\partial u^{i}}{\partial x^{j}} d x^{j}
$$

Of course, this integral will not be terribly simple to compute, but it is very much do-able. Once that's done, we can get the volume of the hyperboloid by simple additon. That is, the volume of the elliptical cylinder is

$$
\begin{aligned}
V_{c y l} & =\pi a b h \\
\Rightarrow V_{\text {hyperboloid }} & =V_{c y l}-8 V_{\text {compliment }}
\end{aligned}
$$

