

Rev.	Author	Date	Summary of Changes
0.0	Matt S.	07/12/2012	Document created.

Contents

1 A Convoluted Strategy

GOOGLE CODE-IN 2012	Google Code-In 2012–BRL-CAD: Computing the Volume of a hyp Primative					
	Document No.	N/A	Author	Matt S.		
	Revision	0.0	Date	Dec. 2012		

1 A Convoluted Strategy

Assume we have an elliptical hyperboloid, Ω , with it's vertex at some point in \mathbb{R}^3 and axis aligned with some vector n. Via a series of three transformations–one translations and two rotations–we can relocate Ω such that the vertex is at (0,0,0), with the axis of the cylinder coincident to the x^3 axis, and the major and minor semi-axis of the elliptical cross section alligned with the x^1 and x^2 axis. The result is then something like the shape shown in Figure 1. Consider now an

Figure 1: Our Sample Elliptical Hyperboloid, Ω

elliptical cylinder Γ also centered at (0, 0, 0), with a cross section that matches the top of Ω . We can then consider the shape $\Phi = \Gamma \setminus \Omega$, and to make life a little simpler we will only consider the the octant $\{x^1, x^2, x^3\} \ge 0$ and take advantage of the symmetry. We then have the shape illustrated in Figure 2. Consider now the hyperbolic surface of Φ . This surface can be described

Figure 2: $\Phi = \Gamma \setminus \Omega, x \ge 0$

via the parametric functions

$$x^{i} = f^{i}\left(u^{1}, u^{2}\right)$$

where

$$f^{1}(u^{1}, u^{2}) = a \cosh u^{2} \cos u^{1}$$
$$f^{2}(u^{1}, u^{2}) = b \cosh u^{2} \sin u^{1}$$
$$f^{3}(u^{1}, u^{2}) = c \sinh u^{2}$$

Here, a, b, c correspond to the elliptical hyperboloid itself via the fact that Ω is defined via

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

and $u^1 \in \left[0, \frac{\pi}{2}\right], u^2 \in [0, \varphi]$. Note that we may determine φ from the height of Ω ,

$$h = c \sinh \varphi$$

With this description in place, it's now a fairly straightforward exercise to determine the volume of Φ , which then allows to then determine the volume of Ω , since

$$\Omega = \Gamma \setminus \Phi$$

To actually determine the volume of Φ , we first determine the metric tensor g_{ij} . Let

$$\begin{aligned} a_j^i &= \frac{\partial f^i}{\partial u^j} \\ &= \begin{bmatrix} \frac{\partial f^1}{\partial u^1} & \frac{\partial f^2}{\partial u^1} & \frac{\partial f^3}{\partial u^1} \\ \frac{\partial f^1}{\partial u^2} & \frac{\partial f^2}{\partial u^2} & \frac{\partial f^3}{\partial u^2} \end{bmatrix} \\ &= \begin{bmatrix} -a\cosh u^2 \sin u^1 & b\cosh u^2 \cos u^1 & 0 \\ a\sinh u^2 \cos u^1 & b\sinh u^2 \sin u^1 & c\cosh u^2 \end{bmatrix} \end{aligned}$$

$$\Rightarrow g_{ij} = a_i^k a_j^k \qquad (k \text{ summed}) \\ = \begin{bmatrix} a_1^1 a_1^1 + a_1^2 a_1^2 + a_1^3 a_1^3 & a_1^1 a_2^1 + a_1^2 a_2^2 + a_1^3 a_2^3 \\ a_2^1 a_1^1 + a_2^2 a_1^2 + a_2^3 a_1^3 & a_2^1 a_2^1 + a_2^2 a_2^2 + a_2^3 a_2^3 \end{bmatrix}$$

so that we may then compute the volume via

$$V_{compliment} = \int_B \sqrt{\det g_{ij}} \, du^1 du^2$$

where

$$B = [0, \pi/2] \times [0, \varphi]$$

and

$$du^i = \frac{\partial u^i}{\partial x^j} dx^j$$

Of course, this integral will not be terribly simple to compute, but it is very much do-able. Once that's done, we can get the volume of the hyperboloid by simple additon. That is, the volume of the elliptical cylinder is

$$V_{cyl} = \pi abh$$

$$\Rightarrow V_{hyperboloid} = V_{cyl} - 8V_{complement}$$