BRL-CAD
Matrix/Vector Math

Matrix and vector functionality. More...

Collaboration diagram for Matrix/Vector Math:

Macros

#define bn_mat_zero(_m)
 
#define bn_mat_idn(_m)
 
#define bn_mat_copy(_d, _s)
 

Functions

void bn_mat_print (const char *title, const mat_t m)
 
void bn_mat_print_guts (const char *title, const mat_t m, char *buf, int buflen)
 
void bn_mat_print_vls (const char *title, const mat_t m, struct bu_vls *vls)
 
double bn_atan2 (double x, double y)
 
void bn_mat_mul (mat_t o, const mat_t a, const mat_t b)
 
void bn_mat_mul2 (const mat_t i, mat_t o)
 
void bn_mat_mul3 (mat_t o, const mat_t a, const mat_t b, const mat_t c)
 
void bn_mat_mul4 (mat_t o, const mat_t a, const mat_t b, const mat_t c, const mat_t d)
 
void bn_matXvec (hvect_t ov, const mat_t im, const hvect_t iv)
 
void bn_mat_inv (mat_t output, const mat_t input)
 
int bn_mat_inverse (mat_t output, const mat_t input)
 
void bn_vtoh_move (hvect_t h, const vect_t v)
 
void bn_htov_move (vect_t v, const hvect_t h)
 
void bn_mat_trn (mat_t om, const mat_t im)
 
void bn_mat_ae (mat_t m, double azimuth, double elev)
 
void bn_ae_vec (fastf_t *azp, fastf_t *elp, const vect_t v)
 
void bn_aet_vec (fastf_t *az, fastf_t *el, fastf_t *twist, vect_t vec_ae, vect_t vec_twist, fastf_t accuracy)
 
void bn_vec_ae (vect_t vec, fastf_t az, fastf_t el)
 
void bn_vec_aed (vect_t vec, fastf_t az, fastf_t el, fastf_t dist)
 
void bn_mat_angles (mat_t mat, double alpha, double beta, double ggamma)
 
void bn_mat_angles_rad (mat_t mat, double alpha, double beta, double ggamma)
 
void bn_eigen2x2 (fastf_t *val1, fastf_t *val2, vect_t vec1, vect_t vec2, fastf_t a, fastf_t b, fastf_t c)
 
void bn_vec_perp (vect_t new_vec, const vect_t old_vec)
 
void bn_mat_fromto (mat_t m, const fastf_t *from, const fastf_t *to, const struct bn_tol *tol)
 
void bn_mat_xrot (mat_t m, double sinx, double cosx)
 
void bn_mat_yrot (mat_t m, double siny, double cosy)
 
void bn_mat_zrot (mat_t m, double sinz, double cosz)
 
void bn_mat_lookat (mat_t rot, const vect_t dir, int yflip)
 
void bn_vec_ortho (vect_t out, const vect_t in)
 
int bn_mat_scale_about_pnt (mat_t mat, const point_t pnt, const double scale)
 
void bn_mat_xform_about_pnt (mat_t mat, const mat_t xform, const point_t pnt)
 
int bn_mat_is_equal (const mat_t a, const mat_t b, const struct bn_tol *tol)
 
int bn_mat_is_identity (const mat_t m)
 
void bn_mat_arb_rot (mat_t m, const point_t pt, const vect_t dir, const fastf_t ang)
 
matp_t bn_mat_dup (const mat_t in)
 
int bn_mat_ck (const char *title, const mat_t m)
 
fastf_t bn_mat_det3 (const mat_t m)
 
fastf_t bn_mat_determinant (const mat_t m)
 
int bn_mat_is_non_unif (const mat_t m)
 
void bn_wrt_point_direc (mat_t out, const mat_t change, const mat_t in, const point_t point, const vect_t direc, const struct bn_tol *tol)
 
void persp_mat (mat_t m, fastf_t fovy, fastf_t aspect, fastf_t near1, fastf_t far1, fastf_t backoff)
 
void mike_persp_mat (fastf_t *pmat, const fastf_t *eye)
 
void deering_persp_mat (fastf_t *m, const fastf_t *l, const fastf_t *h, const fastf_t *eye)
 
int bn_opt_mat (struct bu_vls *msg, size_t argc, const char **argv, void *set_var)
 

Variables

const mat_t bn_mat_identity
 

Detailed Description

Matrix and vector functionality.

Macro Definition Documentation

◆ bn_mat_zero

#define bn_mat_zero (   _m)
Value:
{ \
bu_log("%s:%d bn_mat_zero() is deprecated, use MAT_ZERO()\n", \
__FILE__, __LINE__); \
(_m)[0] = (_m)[1] = (_m)[2] = (_m)[3] = \
(_m)[4] = (_m)[5] = (_m)[6] = (_m)[7] = \
(_m)[8] = (_m)[9] = (_m)[10] = (_m)[11] = \
(_m)[12] = (_m)[13] = (_m)[14] = (_m)[15] = 0.0; }

Definition at line 67 of file mat.h.

◆ bn_mat_idn

#define bn_mat_idn (   _m)
Value:
{ \
bu_log("%s:%d bn_mat_idn() is deprecated, use MAT_IDN()\n", \
__FILE__, __LINE__); \
(_m)[1] = (_m)[2] = (_m)[3] = (_m)[4] = \
(_m)[6] = (_m)[7] = (_m)[8] = (_m)[9] = \
(_m)[11] = (_m)[12] = (_m)[13] = (_m)[14] = 0.0; \
(_m)[0] = (_m)[5] = (_m)[10] = (_m)[15] = 1.0; }

Definition at line 77 of file mat.h.

◆ bn_mat_copy

#define bn_mat_copy (   _d,
  _s 
)
Value:
{ \
bu_log("%s:%d bn_mat_copy() is deprecated, use MAT_COPY()\n", \
__FILE__, __LINE__); \
(_d)[0] = (_s)[0];\
(_d)[1] = (_s)[1];\
(_d)[2] = (_s)[2];\
(_d)[3] = (_s)[3];\
(_d)[4] = (_s)[4];\
(_d)[5] = (_s)[5];\
(_d)[6] = (_s)[6];\
(_d)[7] = (_s)[7];\
(_d)[8] = (_s)[8];\
(_d)[9] = (_s)[9];\
(_d)[10] = (_s)[10];\
(_d)[11] = (_s)[11];\
(_d)[12] = (_s)[12];\
(_d)[13] = (_s)[13];\
(_d)[14] = (_s)[14];\
(_d)[15] = (_s)[15]; }

Definition at line 88 of file mat.h.

Function Documentation

◆ bn_mat_print()

void bn_mat_print ( const char *  title,
const mat_t  m 
)

◆ bn_mat_print_guts()

void bn_mat_print_guts ( const char *  title,
const mat_t  m,
char *  buf,
int  buflen 
)

◆ bn_mat_print_vls()

void bn_mat_print_vls ( const char *  title,
const mat_t  m,
struct bu_vls vls 
)

◆ bn_atan2()

double bn_atan2 ( double  x,
double  y 
)

A wrapper for the system atan2(). On the Silicon Graphics, and perhaps on others, x==0 incorrectly returns infinity.

◆ bn_mat_mul()

void bn_mat_mul ( mat_t  o,
const mat_t  a,
const mat_t  b 
)

Multiply matrix "a" by "b" and store the result in "o".

This is different from multiplying "b" by "a" (most of the time!) Also, "o" must not be the same as either of the inputs.

◆ bn_mat_mul2()

void bn_mat_mul2 ( const mat_t  i,
mat_t  o 
)

o = i * o

A convenience wrapper for bn_mat_mul() to update a matrix in place. The argument ordering is confusing either way.

◆ bn_mat_mul3()

void bn_mat_mul3 ( mat_t  o,
const mat_t  a,
const mat_t  b,
const mat_t  c 
)

o = a * b * c

The output matrix may be the same as 'b' or 'c', but may not be 'a'.

◆ bn_mat_mul4()

void bn_mat_mul4 ( mat_t  o,
const mat_t  a,
const mat_t  b,
const mat_t  c,
const mat_t  d 
)

o = a * b * c * d

The output matrix may be the same as any input matrix.

◆ bn_matXvec()

void bn_matXvec ( hvect_t  ov,
const mat_t  im,
const hvect_t  iv 
)

Multiply the matrix "im" by the vector "iv" and store the result in the vector "ov". Note this is post-multiply, and operates on 4-tuples. Use MAT4X3VEC() to operate on 3-tuples.

◆ bn_mat_inv()

void bn_mat_inv ( mat_t  output,
const mat_t  input 
)

The matrix pointed at by "input" is inverted and stored in the area pointed at by "output".

Calls bu_bomb if matrix is singular.

◆ bn_mat_inverse()

int bn_mat_inverse ( mat_t  output,
const mat_t  input 
)

The matrix pointed at by "input" is inverted and stored in the area pointed at by "output".

Invert a 4-by-4 matrix using Algorithm 120 from ACM. This is a modified Gauss-Jordan algorithm. Note: Inversion is done in place, with 3 work vectors.

Returns
1 if OK.
0 if matrix is singular.

◆ bn_vtoh_move()

void bn_vtoh_move ( hvect_t  h,
const vect_t  v 
)

Takes a pointer to a [x, y, z] vector, and a pointer to space for a homogeneous vector [x, y, z, w], and builds [x, y, z, 1].

◆ bn_htov_move()

void bn_htov_move ( vect_t  v,
const hvect_t  h 
)

Takes a pointer to [x, y, z, w], and converts it to an ordinary vector [x/w, y/w, z/w]. Optimization for the case of w==1 is performed.

Todo:
make tolerance configurable

◆ bn_mat_trn()

void bn_mat_trn ( mat_t  om,
const mat_t  im 
)

◆ bn_mat_ae()

void bn_mat_ae ( mat_t  m,
double  azimuth,
double  elev 
)

Compute a 4x4 rotation matrix given Azimuth and Elevation.

Azimuth is +X, Elevation is +Z, both in degrees.

Formula due to Doug Gwyn, BRL.

◆ bn_ae_vec()

void bn_ae_vec ( fastf_t azp,
fastf_t elp,
const vect_t  v 
)

Find the azimuth and elevation angles that correspond to the direction (not including twist) given by a direction vector.

◆ bn_aet_vec()

void bn_aet_vec ( fastf_t az,
fastf_t el,
fastf_t twist,
vect_t  vec_ae,
vect_t  vec_twist,
fastf_t  accuracy 
)

Find the azimuth, elevation, and twist from two vectors. Vec_ae is in the direction of view (+z in mged view) and vec_twist points to the viewers right (+x in mged view). Accuracy (degrees) is used to stabilize flutter between equivalent extremes of atan2(), and to snap twist to zero when elevation is near +/- 90

◆ bn_vec_ae()

void bn_vec_ae ( vect_t  vec,
fastf_t  az,
fastf_t  el 
)

Find a unit vector from the origin given azimuth and elevation.

◆ bn_vec_aed()

void bn_vec_aed ( vect_t  vec,
fastf_t  az,
fastf_t  el,
fastf_t  dist 
)

Find a vector from the origin given azimuth, elevation, and distance.

◆ bn_mat_angles()

void bn_mat_angles ( mat_t  mat,
double  alpha,
double  beta,
double  ggamma 
)

This routine builds a Homogeneous rotation matrix, given alpha, beta, and gamma as angles of rotation, in degrees.

Alpha is angle of rotation about the X axis, and is done third. Beta is angle of rotation about the Y axis, and is done second. Gamma is angle of rotation about Z axis, and is done first.

Todo:
make tolerance configurable

◆ bn_mat_angles_rad()

void bn_mat_angles_rad ( mat_t  mat,
double  alpha,
double  beta,
double  ggamma 
)

This routine builds a Homogeneous rotation matrix, given alpha, beta, and gamma as angles of rotation, in radians.

Alpha is angle of rotation about the X axis, and is done third. Beta is angle of rotation about the Y axis, and is done second. Gamma is angle of rotation about Z axis, and is done first.

Todo:
make tolerance configurable

◆ bn_eigen2x2()

void bn_eigen2x2 ( fastf_t val1,
fastf_t val2,
vect_t  vec1,
vect_t  vec2,
fastf_t  a,
fastf_t  b,
fastf_t  c 
)

Find the eigenvalues and eigenvectors of a symmetric 2x2 matrix. (a b) (b c)

The eigenvalue with the smallest absolute value is returned in val1, with its eigenvector in vec1.

◆ bn_vec_perp()

void bn_vec_perp ( vect_t  new_vec,
const vect_t  old_vec 
)

Given a vector, create another vector which is perpendicular to it. The output vector will have unit length only if the input vector did.

Todo:
make tolerance configurable

◆ bn_mat_fromto()

void bn_mat_fromto ( mat_t  m,
const fastf_t from,
const fastf_t to,
const struct bn_tol tol 
)

Given two vectors, compute a rotation matrix that will transform space by the angle between the two. There are many candidate matrices.

The input 'from' and 'to' vectors need not be unit length. MAT4X3VEC(to, m, from) is the identity that is created.

◆ bn_mat_xrot()

void bn_mat_xrot ( mat_t  m,
double  sinx,
double  cosx 
)

Given the sin and cos of an X rotation angle, produce the rotation matrix.

◆ bn_mat_yrot()

void bn_mat_yrot ( mat_t  m,
double  siny,
double  cosy 
)

Given the sin and cos of a Y rotation angle, produce the rotation matrix.

◆ bn_mat_zrot()

void bn_mat_zrot ( mat_t  m,
double  sinz,
double  cosz 
)

Given the sin and cos of a Z rotation angle, produce the rotation matrix.

◆ bn_mat_lookat()

void bn_mat_lookat ( mat_t  rot,
const vect_t  dir,
int  yflip 
)

Given a direction vector D of unit length, product a matrix which rotates that vector D onto the -Z axis. This matrix will be suitable for use as a "model2view" matrix.

XXX This routine will fail if the vector is already more or less aligned with the Z axis.

This is done in several steps.

1) Rotate D about Z to match +X axis. Azimuth adjustment.
2) Rotate D about Y to match -Y axis. Elevation adjustment.
3) Rotate D about Z to make projection of X axis again point
in the +X direction. Twist adjustment.
4) Optionally, flip sign on Y axis if original Z becomes inverted.
This can be nice for static frames, but is astonishing when
used in animation.
@ Y
Definition: vmath.h:402
@ X
Definition: vmath.h:401
@ Z
Definition: vmath.h:403

◆ bn_vec_ortho()

void bn_vec_ortho ( vect_t  out,
const vect_t  in 
)

Given a vector, create another vector which is perpendicular to it, and with unit length. This algorithm taken from Gift's arvec.f; a faster algorithm may be possible.

Todo:
make tolerance configurable

◆ bn_mat_scale_about_pnt()

int bn_mat_scale_about_pnt ( mat_t  mat,
const point_t  pnt,
const double  scale 
)

Build a matrix to scale uniformly around a given point.

Returns
-1 if scale is too small.
0 if OK.
Todo:
make tolerance configurable

◆ bn_mat_xform_about_pnt()

void bn_mat_xform_about_pnt ( mat_t  mat,
const mat_t  xform,
const point_t  pnt 
)

Build a matrix to apply arbitrary 4x4 transformation around a given point.

◆ bn_mat_is_equal()

int bn_mat_is_equal ( const mat_t  a,
const mat_t  b,
const struct bn_tol tol 
)
Returns
0 When matrices are not equal
1 When matrices are equal

◆ bn_mat_is_identity()

int bn_mat_is_identity ( const mat_t  m)

This routine is intended for detecting identity matrices read in from ascii or binary files, where the numbers are pure ones or zeros. This routine is not intended for tolerance-based "near-zero" comparisons; as such, it shouldn't be used on matrices which are the result of calculation.

Returns
0 non-identity
1 a perfect identity matrix

◆ bn_mat_arb_rot()

void bn_mat_arb_rot ( mat_t  m,
const point_t  pt,
const vect_t  dir,
const fastf_t  ang 
)

Construct a transformation matrix for rotation about an arbitrary axis. The axis is defined by a point (pt) and a unit direction vector (dir). The angle of rotation is "ang"

Todo:
make tolerance configurable

◆ bn_mat_dup()

matp_t bn_mat_dup ( const mat_t  in)

Return a pointer to a copy of the matrix in dynamically allocated memory.

◆ bn_mat_ck()

int bn_mat_ck ( const char *  title,
const mat_t  m 
)

Check to ensure that a rotation matrix preserves axis perpendicularity. Note that not all matrices are rotation matrices.

Returns
-1 FAIL
0 OK

◆ bn_mat_det3()

fastf_t bn_mat_det3 ( const mat_t  m)

Calculates the determinant of the 3X3 "rotation" part of the passed matrix.

◆ bn_mat_determinant()

fastf_t bn_mat_determinant ( const mat_t  m)

Calculates the determinant of the 4X4 matrix

◆ bn_mat_is_non_unif()

int bn_mat_is_non_unif ( const mat_t  m)
Todo:
make tolerance configurable

◆ bn_wrt_point_direc()

void bn_wrt_point_direc ( mat_t  out,
const mat_t  change,
const mat_t  in,
const point_t  point,
const vect_t  direc,
const struct bn_tol tol 
)

Given a model-space transformation matrix "change", return a matrix which applies the change with-respect-to given "point" and "direc".

◆ persp_mat()

void persp_mat ( mat_t  m,
fastf_t  fovy,
fastf_t  aspect,
fastf_t  near1,
fastf_t  far1,
fastf_t  backoff 
)

◆ mike_persp_mat()

void mike_persp_mat ( fastf_t pmat,
const fastf_t eye 
)

◆ deering_persp_mat()

void deering_persp_mat ( fastf_t m,
const fastf_t l,
const fastf_t h,
const fastf_t eye 
)

◆ bn_opt_mat()

int bn_opt_mat ( struct bu_vls msg,
size_t  argc,
const char **  argv,
void *  set_var 
)

Variable Documentation

◆ bn_mat_identity

const mat_t bn_mat_identity
extern