BRL-CAD
vmath.h File Reference

fundamental vector, matrix, quaternion math macros More...

#include "common.h"
#include <math.h>
#include <float.h>
Include dependency graph for vmath.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define _USE_MATH_DEFINES   1
 
#define M_   XXX
 
#define M_1_2PI   0.159154943091895335768883763372514362
 
#define M_1_PI   0.318309886183790671537767526745028724
 
#define M_2_PI   0.636619772367581343075535053490057448
 
#define M_2_SQRTPI   1.12837916709551257389615890312154517
 
#define M_E   2.71828182845904523536028747135266250
 
#define M_EULER   0.577215664901532860606512090082402431
 
#define M_LOG2E   1.44269504088896340735992468100189214
 
#define M_LOG10E   0.434294481903251827651128918916605082
 
#define M_LN2   0.693147180559945309417232121458176568
 
#define M_LN10   2.30258509299404568401799145468436421
 
#define M_LNPI   1.14472988584940017414342735135305871 /** log_e(pi) */
 
#define M_PI   3.14159265358979323846264338327950288
 
#define M_2PI   6.28318530717958647692528676655900576
 
#define M_PI_2   1.57079632679489661923132169163975144
 
#define M_PI_3   1.04719755119659774615421446109316763
 
#define M_PI_4   0.785398163397448309615660845819875721
 
#define M_SQRT1_2   0.707106781186547524400844362104849039
 
#define M_SQRT2   1.41421356237309504880168872420969808
 
#define M_SQRT3   1.73205080756887729352744634150587237
 
#define M_SQRTPI   1.77245385090551602729816748334114518
 
#define DEG2RAD   0.0174532925199432957692369076848861271
 
#define RAD2DEG   57.2957795130823208767981548141051703
 
#define MAX_FASTF   1.0e73 /* Very close to the largest number */
 
#define SQRT_MAX_FASTF   1.0e36 /* This squared just avoids overflow */
 
#define SMALL_FASTF   1.0e-77 /* Anything smaller is zero */
 
#define SQRT_SMALL_FASTF   1.0e-39 /* This squared gives zero */
 
#define SMALL   SQRT_SMALL_FASTF
 
#define INFINITY   ((fastf_t)1.0e38)
 
#define VDIVIDE_TOL   (1.0e-20)
 
#define VUNITIZE_TOL   (1.0e-15)
 
#define ELEMENTS_PER_VECT2D   2
 number of fastf_t's per vect2d_t More...
 
#define ELEMENTS_PER_POINT2D   2
 number of fastf_t's per point2d_t More...
 
#define ELEMENTS_PER_VECT   3
 number of fastf_t's per vect_t More...
 
#define ELEMENTS_PER_POINT   3
 number of fastf_t's per point_t More...
 
#define ELEMENTS_PER_HVECT   4
 number of fastf_t's per hvect_t (homogeneous vector) More...
 
#define ELEMENTS_PER_HPOINT   4
 number of fastf_t's per hpt_t (homogeneous point) More...
 
#define ELEMENTS_PER_PLANE   4
 number of fastf_t's per plane_t More...
 
#define ELEMENTS_PER_MAT   (ELEMENTS_PER_PLANE*ELEMENTS_PER_PLANE)
 number of fastf_t's per mat_t More...
 
#define INVALID(n)   (!((n) > -INFINITY && (n) < INFINITY))
 
#define VINVALID(v)   (INVALID((v)[X]) || INVALID((v)[Y]) || INVALID((v)[Z]))
 
#define V2INVALID(v)   (INVALID((v)[X]) || INVALID((v)[Y]))
 
#define HINVALID(v)   (INVALID((v)[X]) || INVALID((v)[Y]) || INVALID((v)[Z]) || INVALID((v)[W]))
 
#define NEAR_ZERO(val, epsilon)   (((val) > -epsilon) && ((val) < epsilon))
 
#define VNEAR_ZERO(v, tol)
 
#define V2NEAR_ZERO(v, tol)   (NEAR_ZERO(v[X], tol) && NEAR_ZERO(v[Y], tol))
 
#define HNEAR_ZERO(v, tol)
 
#define ZERO(_a)   NEAR_ZERO((_a), SMALL_FASTF)
 
#define VZERO(_a)   VNEAR_ZERO((_a), SMALL_FASTF)
 
#define V2ZERO(_a)   V2NEAR_ZERO((_a), SMALL_FASTF)
 
#define HZERO(_a)   HNEAR_ZERO((_a), SMALL_FASTF)
 
#define NEAR_EQUAL(_a, _b, _tol)   NEAR_ZERO((_a) - (_b), (_tol))
 
#define VNEAR_EQUAL(_a, _b, _tol)
 
#define V2NEAR_EQUAL(a, b, tol)
 
#define HNEAR_EQUAL(_a, _b, _tol)
 
#define EQUAL(_a, _b)   NEAR_EQUAL((_a), (_b), SMALL_FASTF)
 
#define VEQUAL(_a, _b)   VNEAR_EQUAL((_a), (_b), SMALL_FASTF)
 
#define V2EQUAL(_a, _b)   V2NEAR_EQUAL((_a), (_b), SMALL_FASTF)
 Return truthfully whether two 2D vectors are equal within a minimum representation tolerance. More...
 
#define HEQUAL(_a, _b)   HNEAR_EQUAL((_a), (_b), SMALL_FASTF)
 Return truthfully whether two higher degree vectors are equal within a minimum representation tolerance. More...
 
#define DIST_PNT_PLANE(_pt, _pl)   (VDOT(_pt, _pl) - (_pl)[W])
 Compute distance from a point to a plane. More...
 
#define DIST_PNT_PNT_SQ(_a, _b)
 Compute distance between two points. More...
 
#define DIST_PNT_PNT(_a, _b)   sqrt(DIST_PNT_PNT_SQ(_a, _b))
 
#define DIST_PNT2_PNT2_SQ(_a, _b)
 Compute distance between two 2D points. More...
 
#define DIST_PNT2_PNT2(_a, _b)   sqrt(DIST_PNT2_PNT2_SQ(_a, _b))
 
#define MAT_DELTAS(_m, _x, _y, _z)
 set translation values of 4x4 matrix with x, y, z values. More...
 
#define MAT_DELTAS_VEC(_m, _v)    MAT_DELTAS(_m, (_v)[X], (_v)[Y], (_v)[Z])
 set translation values of 4x4 matrix from a vector. More...
 
#define MAT_DELTAS_VEC_NEG(_m, _v)    MAT_DELTAS(_m, -(_v)[X], -(_v)[Y], -(_v)[Z])
 set translation values of 4x4 matrix from a reversed vector. More...
 
#define MAT_DELTAS_GET(_v, _m)
 get translation values of 4x4 matrix to a vector. More...
 
#define MAT_DELTAS_GET_NEG(_v, _m)
 get translation values of 4x4 matrix to a vector, reversed. More...
 
#define MAT_DELTAS_ADD(_m, _x, _y, _z)
 increment translation elements in a 4x4 matrix with x, y, z values. More...
 
#define MAT_DELTAS_ADD_VEC(_m, _v)
 increment translation elements in a 4x4 matrix from a vector. More...
 
#define MAT_DELTAS_SUB(_m, _x, _y, _z)
 decrement translation elements in a 4x4 matrix with x, y, z values. More...
 
#define MAT_DELTAS_SUB_VEC(_m, _v)
 decrement translation elements in a 4x4 matrix from a vector. More...
 
#define MAT_DELTAS_MUL(_m, _x, _y, _z)
 decrement translation elements in a 4x4 matrix with x, y, z values. More...
 
#define MAT_DELTAS_MUL_VEC(_m, _v)
 decrement translation elements in a 4x4 matrix from a vector. More...
 
#define MAT_SCALE(_m, _x, _y, _z)
 set scale of 4x4 matrix from xyz. More...
 
#define MAT_SCALE_VEC(_m, _v)
 set scale of 4x4 matrix from vector. More...
 
#define MAT_SCALE_ALL(_m, _s)   (_m)[MSA] = (_s)
 set uniform scale of 4x4 matrix from scalar. More...
 
#define MAT_SCALE_ADD(_m, _x, _y, _z)
 add to scaling elements in a 4x4 matrix from xyz. More...
 
#define MAT_SCALE_ADD_VEC(_m, _v)
 add to scaling elements in a 4x4 matrix from vector. More...
 
#define MAT_SCALE_SUB(_m, _x, _y, _z)
 subtract from scaling elements in a 4x4 matrix from xyz. More...
 
#define MAT_SCALE_SUB_VEC(_m, _v)
 subtract from scaling elements in a 4x4 matrix from vector. More...
 
#define MAT_SCALE_MUL(_m, _x, _y, _z)
 multiply scaling elements in a 4x4 matrix from xyz. More...
 
#define MAT_SCALE_MUL_VEC(_m, _v)
 multiply scaling elements in a 4x4 matrix from vector. More...
 
#define MAT_ZERO(m)
 Zero a matrix. More...
 
#define MAT_IDN(m)
 Set matrix to identity. More...
 
#define MAT_TRANSPOSE(t, m)
 set t to the transpose of matrix m More...
 
#define MAT_COPY(c, m)
 Copy a matrix ‘m’ into ‘c’. More...
 
#define VSET(o, a, b, c)
 Set 3D vector at ‘o’ to have coordinates ‘a’, ‘b’, and ‘c’. More...
 
#define V2SET(o, a, b)
 Set 2D vector at ‘o’ to have coordinates ‘a’ and ‘b’. More...
 
#define HSET(o, a, b, c, d)
 Set 4D vector at ‘o’ to homogeneous coordinates ‘a’, ‘b’, ‘c’, and ‘d’. More...
 
#define VSETALL(v, s)
 Set all elements of 3D vector to same scalar value. More...
 
#define V2SETALL(v, s)
 Set 2D vector elements to same scalar value. More...
 
#define HSETALL(v, s)
 Set 4D vector elements to same scalar value. More...
 
#define VSETALLN(v, s, n)
 Set all elements of N-vector to same scalar value. More...
 
#define VMOVE(o, v)
 Transfer 3D vector at ‘v’ to vector at ‘o’. More...
 
#define V2MOVE(o, v)
 Move a 2D vector at ‘v’ to vector at ‘o’. More...
 
#define HMOVE(o, v)
 Move a homogeneous 4-tuple at ‘v’ to ‘o’. More...
 
#define VMOVEN(o, v, n)
 Transfer vector of length ‘n’ at ‘v’ to vector at ‘o’. More...
 
#define VREVERSE(o, v)
 Reverse the direction of 3D vector ‘v’ and store it in ‘o’. More...
 
#define V2REVERSE(o, v)
 Reverse the direction of 2D vector ‘v’ and store it in ‘o’. More...
 
#define HREVERSE(o, v)
 Same as VREVERSE, but for a 4-tuple. Also useful on plane_t objects. More...
 
#define VADD2(o, a, b)
 Add 3D vectors at ‘a’ and ‘b’, store result at ‘o’. More...
 
#define V2ADD2(o, a, b)
 Add 2D vectors at ‘a’ and ‘b’, store result at ‘o’. More...
 
#define HADD2(o, a, b)
 Add 4D vectors at ‘a’ and ‘b’, store result at ‘o’. More...
 
#define VADD2N(o, a, b, n)
 Add vectors of length ‘n’ at ‘a’ and ‘b’, store result at ‘o’. More...
 
#define VSUB2(o, a, b)
 Subtract 3D vector at ‘b’ from vector at ‘a’, store result at ‘o’. More...
 
#define V2SUB2(o, a, b)
 Subtract 2D vector at ‘b’ from vector at ‘a’, store result at ‘o’. More...
 
#define HSUB2(o, a, b)
 Subtract 4D vector at ‘b’ from vector at ‘a’, store result at ‘o’. More...
 
#define VSUB2N(o, a, b, n)
 Subtract ‘n’ length vector at ‘b’ from ‘n’ length vector at ‘a’, store result at ‘o’. More...
 
#define VSUB3(o, a, b, c)
 3D Vectors: O = A - B - C More...
 
#define V2SUB3(o, a, b, c)
 2D Vectors: O = A - B - C More...
 
#define HSUB3(o, a, b, c)
 4D Vectors: O = A - B - C More...
 
#define VSUB3N(o, a, b, c, n)
 Vectors: O = A - B - C for vectors of length ‘n’. More...
 
#define VADD3(o, a, b, c)
 Add 3 3D vectors at ‘a’, ‘b’, and ‘c’, store result at ‘o’. More...
 
#define V2ADD3(o, a, b, c)
 Add 3 2D vectors at ‘a’, ‘b’, and ‘c’, store result at ‘o’. More...
 
#define HADD3(o, a, b, c)
 Add 3 4D vectors at ‘a’, ‘b’, and ‘c’, store result at ‘o’. More...
 
#define VADD3N(o, a, b, c, n)
 Add 3 vectors of length ‘n’ at ‘a’, ‘b’, and ‘c’, store result at ‘o’. More...
 
#define VADD4(o, a, b, c, d)
 Add 4 vectors at ‘a’, ‘b’, ‘c’, and ‘d’, store result at ‘o’. More...
 
#define V2ADD4(o, a, b, c, d)
 Add 4 2D vectors at ‘a’, ‘b’, ‘c’, and ‘d’, store result at ‘o’. More...
 
#define HADD4(o, a, b, c, d)
 Add 4 4D vectors at ‘a’, ‘b’, ‘c’, and ‘d’, store result at ‘o’. More...
 
#define VADD4N(o, a, b, c, d, n)
 Add 4 ‘n’ length vectors at ‘a’, ‘b’, ‘c’, and ‘d’, store result at ‘o’. More...
 
#define VSCALE(o, v, s)
 Scale 3D vector at ‘v’ by scalar ‘s’, store result at ‘o’. More...
 
#define V2SCALE(o, v, s)
 Scale 2D vector at ‘v’ by scalar ‘s’, store result at ‘o’. More...
 
#define HSCALE(o, v, s)
 Scale 4D vector at ‘v’ by scalar ‘s’, store result at ‘o’. More...
 
#define VSCALEN(o, v, s, n)
 Scale vector of length ‘n’ at ‘v’ by scalar ‘s’, store result at ‘o’. More...
 
#define VUNITIZE(v)
 Normalize vector ‘v’ to be a unit vector. More...
 
#define V2UNITIZE(v)
 Normalize 2D vector ‘v’ to be a unit vector. More...
 
#define VADD2SCALE(o, a, b, s)
 Find the sum of two points, and scale the result. Often used to find the midpoint. More...
 
#define VADD2SCALEN(o, a, b, s, n)
 Find the sum of two vectors of length ‘n’, and scale the result by ‘s’. Often used to find the midpoint. More...
 
#define VSUB2SCALE(o, a, b, s)
 Find the difference between two points, and scale result. Often used to compute bounding sphere radius given rpp points. More...
 
#define VSUB2SCALEN(o, a, b, s, n)
 Find the difference between two vectors of length ‘n’, and scale result by ‘s’. More...
 
#define VCOMB3(o, a, b, c, d, e, f)
 Combine together three vectors, all scaled by scalars. More...
 
#define VCOMB3N(o, a, b, c, d, e, f, n)
 Combine together three vectors of length ‘n’, all scaled by scalars. More...
 
#define VCOMB2(o, sa, va, sb, vb)
 Combine together 2 vectors, both scaled by scalars. More...
 
#define VCOMB2N(o, sa, a, sb, b, n)
 Combine together 2 vectors of length ‘n’, both scaled by scalars. More...
 
#define VJOIN4(a, b, c, d, e, f, g, h, i, j)
 
#define VJOIN3(o, a, sb, b, sc, c, sd, d)
 
#define VJOIN2(o, a, sb, b, sc, c)
 Compose 3D vector at ‘o’ of: Vector at ‘a’ plus scalar ‘sb’ times vector at ‘b’ plus scalar ‘sc’ times vector at ‘c’. More...
 
#define V2JOIN2(o, a, sb, b, sc, c)
 Compose 2D vector at ‘o’ of: Vector at ‘a’ plus scalar ‘sb’ times vector at ‘b’ plus scalar ‘sc’ times vector at ‘c’. More...
 
#define HJOIN2(o, a, sb, b, sc, c)
 Compose 4D vector at ‘o’ of: Vector at ‘a’ plus scalar ‘sb’ times vector at ‘b’ plus scalar ‘sc’ times vector at ‘c’. More...
 
#define VJOIN2N(o, a, sb, b, sc, c, n)
 
#define VJOIN1(o, a, sb, b)
 
#define V2JOIN1(o, a, sb, b)
 
#define HJOIN1(o, a, sb, b)
 
#define VJOIN1N(o, a, sb, b, n)
 
#define VBLEND2(o, sa, a, sb, b)
 Blend into vector ‘o’ scalar ‘sa’ times vector at ‘a’ plus scalar ‘sb’ times vector at ‘b’. More...
 
#define VBLEND2N(o, sa, a, sb, b, n)
 Blend into vector ‘o’ scalar ‘sa’ times vector at ‘a’ plus scalar ‘sb’ times vector at ‘b’. More...
 
#define VPROJECT(a, b, c, d)
 Project vector ‘a’ onto ‘b’ vector ‘c’ is the component of ‘a’ parallel to ‘b’ " `d' " " " " " orthogonal " ". More...
 
#define MAGSQ(v)   ((v)[X]*(v)[X] + (v)[Y]*(v)[Y] + (v)[Z]*(v)[Z])
 Return scalar magnitude squared of vector at ‘v’. More...
 
#define MAG2SQ(v)   ((v)[X]*(v)[X] + (v)[Y]*(v)[Y])
 
#define MAGNITUDE(v)   sqrt(MAGSQ(v))
 Return scalar magnitude of the 3D vector ‘a’. This is otherwise known as the Euclidean norm of the provided vector.. More...
 
#define MAGNITUDE2(v)   sqrt(MAG2SQ(v))
 Return scalar magnitude of the 2D vector at ‘a’. This is otherwise known as the Euclidean norm of the provided vector.. More...
 
#define VCROSS(o, a, b)
 Store cross product of 3D vectors at ‘a’ and ‘b’ in vector at ‘o’. More...
 
#define V2CROSS(a, b)   ((a)[X] * (b)[Y] - (a)[Y] * (b)[X])
 
#define HCROSS(a, b, c)
 
#define VDOT(a, b)   ((a)[X]*(b)[X] + (a)[Y]*(b)[Y] + (a)[Z]*(b)[Z])
 Compute dot product of vectors at ‘a’ and ‘b’. More...
 
#define V2DOT(a, b)   ((a)[X]*(b)[X] + (a)[Y]*(b)[Y])
 
#define HDOT(a, b)   ((a)[X]*(b)[X] + (a)[Y]*(b)[Y] + (a)[Z]*(b)[Z] + (a)[W]*(b)[W])
 
#define VLERP(o, a, b, t)
 Linearly interpolate between two 3D vectors ‘a’ and ‘b’ by interpolant ‘t’, expected in the range [0,1], with result in ‘o’. More...
 
#define V2LERP(o, a, b, t)
 Linearly interpolate between two 2D vectors ‘a’ and ‘b’ by interpolant ‘t’, expected in the range [0,1], with result in ‘o’. More...
 
#define HLERP(o, a, b, t)
 Linearly interpolate between two 4D vectors ‘a’ and ‘b’ by interpolant ‘t’, expected in the range [0,1], with result in ‘o’. More...
 
#define VSUB2DOT(_pt2, _pt, _vec)
 Subtract two points to make a vector, dot with another vector. Returns the dot product scalar value. More...
 
#define V2ARGS(a)   (a)[X], (a)[Y]
 Turn a vector into comma-separated list of elements, for variable argument subroutines (e.g. printf()). More...
 
#define V3ARGS(a)   (a)[X], (a)[Y], (a)[Z]
 
#define V4ARGS(a)   (a)[X], (a)[Y], (a)[Z], (a)[W]
 
#define INTCLAMP(_a)   (NEAR_EQUAL((_a), rint(_a), VUNITIZE_TOL) ? rint(_a) : (_a))
 
#define VINTCLAMP(_v)
 
#define V2INTCLAMP(_v)
 
#define HINTCLAMP(_v)
 
#define V2INTCLAMPARGS(a)   INTCLAMP((a)[X]), INTCLAMP((a)[Y])
 integer clamped versions of the previous arg macros. More...
 
#define V3INTCLAMPARGS(a)   INTCLAMP((a)[X]), INTCLAMP((a)[Y]), INTCLAMP((a)[Z])
 integer clamped versions of the previous arg macros. More...
 
#define V4INTCLAMPARGS(a)   INTCLAMP((a)[X]), INTCLAMP((a)[Y]), INTCLAMP((a)[Z]), INTCLAMP((a)[W])
 integer clamped versions of the previous arg macros. More...
 
#define V2PRINT(a, b)    fprintf(stderr, "%s (%.6f, %.6g)\n", a, V2ARGS(b));
 Print vector name and components on stderr. More...
 
#define VPRINT(a, b)    fprintf(stderr, "%s (%.6f, %.6f, %.6f)\n", a, V3ARGS(b));
 
#define HPRINT(a, b)    fprintf(stderr, "%s (%.6f, %.6f, %.6f, %.6f)\n", a, V4ARGS(b));
 
#define V2INTCLAMPPRINT(a, b)    fprintf(stderr, "%s (%g, %g)\n", a, V2INTCLAMPARGS(b));
 Included below are integer clamped versions of the previous print macros. More...
 
#define VINTCLAMPPRINT(a, b)    fprintf(stderr, "%s (%g, %g, %g)\n", a, V3INTCLAMPARGS(b));
 
#define HINTCLAMPPRINT(a, b)    fprintf(stderr, "%s (%g, %g, %g, %g)\n", a, V4INTCLAMPARGS(b));
 
#define VELMUL(o, a, b)
 Vector element multiplication. Really: diagonal matrix X vect. More...
 
#define VELMUL3(o, a, b, c)
 
#define VELDIV(o, a, b)
 Similar to VELMUL. More...
 
#define VINVDIR(_inv, _dir)
 Given a direction vector, compute the inverses of each element. When division by zero would have occurred, mark inverse as INFINITY. More...
 
#define MAT3X3VEC(o, mat, vec)
 Apply the 3x3 part of a mat_t to a 3-tuple. This rotates a vector without scaling it (changing its length). More...
 
#define VEC3X3MAT(o, i, m)
 Multiply a 3-tuple by the 3x3 part of a mat_t. More...
 
#define MAT3X2VEC(o, mat, vec)
 Apply the 3x3 part of a mat_t to a 2-tuple (Z part=0). More...
 
#define VEC2X3MAT(o, i, m)
 Multiply a 2-tuple (Z=0) by the 3x3 part of a mat_t. More...
 
#define MAT4X3PNT(o, m, i)
 Apply a 4x4 matrix to a 3-tuple which is an absolute Point in space. Output and input points should be separate arrays. More...
 
#define PNT3X4MAT(o, i, m)
 Multiply an Absolute 3-Point by a full 4x4 matrix. Output and input points should be separate arrays. More...
 
#define MAT4X4PNT(o, m, i)
 Multiply an Absolute hvect_t 4-Point by a full 4x4 matrix. Output and input points should be separate arrays. More...
 
#define MAT4X3VEC(o, m, i)
 Apply a 4x4 matrix to a 3-tuple which is a relative Vector in space. This macro can scale the length of the vector if [15] != 1.0. Output and input vectors should be separate arrays. More...
 
#define MAT4XSCALOR(o, m, i)
 
#define VEC3X4MAT(o, i, m)
 Multiply a Relative 3-Vector by most of a 4x4 matrix. Output and input vectors should be separate arrays. More...
 
#define VEC2X4MAT(o, i, m)
 Multiply a Relative 2-Vector by most of a 4x4 matrix. More...
 
#define V_MIN(r, s)   if ((r) > (s)) r = (s)
 Included below are macros to update min and max X, Y, Z values to contain a point. More...
 
#define V_MAX(r, s)   if ((r) < (s)) r = (s)
 
#define VMIN(r, s)
 
#define VMAX(r, s)
 
#define VMINMAX(min, max, pt)
 
#define V2MIN(r, s)
 Included below are macros to update min and max X, Y values to contain a point. More...
 
#define V2MAX(r, s)
 
#define V2MINMAX(min, max, pt)
 
#define CLAMP(_v, _l, _h)   V_MAX((_v), (_l)); else V_MIN((_v), (_h))
 
#define HDIVIDE(o, v)
 Divide out homogeneous parameter from hvect_t, creating vect_t. More...
 
#define QUAT_FROM_ROT(q, r, x, y, z)
 Quaternion math definitions. More...
 
#define QUAT_FROM_VROT(q, r, v)
 
#define QUAT_FROM_VROT_DEG(q, r, v)    QUAT_FROM_VROT(q, ((r)*DEG2RAD), v)
 
#define QUAT_FROM_ROT_DEG(q, r, x, y, z)    QUAT_FROM_ROT(q, ((r)*DEG2RAD), x, y, z)
 
#define QSET(a, b, c, d, e)
 Set quaternion at ‘a’ to have coordinates ‘b’, ‘c’, ‘d’, and ‘e’. More...
 
#define QMOVE(a, b)
 Transfer quaternion at ‘b’ to quaternion at ‘a’. More...
 
#define QADD2(a, b, c)
 Add quaternions at ‘b’ and ‘c’, store result at ‘a’. More...
 
#define QSUB2(a, b, c)
 Subtract quaternion at ‘c’ from quaternion at ‘b’, store result at ‘a’. More...
 
#define QSCALE(a, b, c)
 Scale quaternion at ‘b’ by scalar ‘c’, store result at ‘a’. More...
 
#define QUNITIZE(a)
 Normalize quaternion 'a' to be a unit quaternion. More...
 
#define QMAGSQ(a)
 Return scalar magnitude squared of quaternion at ‘a’. More...
 
#define QMAGNITUDE(a)   sqrt(QMAGSQ(a))
 Return scalar magnitude of quaternion at ‘a’. More...
 
#define QDOT(a, b)
 Compute dot product of quaternions at ‘a’ and ‘b’. More...
 
#define QMUL(a, b, c)
 Compute quaternion product a = b * c. More...
 
#define QCONJUGATE(a, b)
 Conjugate quaternion. More...
 
#define QINVERSE(a, b)
 Multiplicative inverse quaternion. More...
 
#define QBLEND2(a, b, c, d, e)
 Blend into quaternion ‘a’. More...
 
#define V3RPP_DISJOINT(_l1, _h1, _l2, _h2)
 
#define V3RPP_DISJOINT_TOL(_l1, _h1, _l2, _h2, _t)
 
#define V3RPP_OVERLAP(_l1, _h1, _l2, _h2)
 
#define V3RPP_OVERLAP_TOL(_l1, _h1, _l2, _h2, _t)
 If two extents overlap within distance tolerance, return true. More...
 
#define V3PNT_IN_RPP(_pt, _lo, _hi)
 Is the point within or on the boundary of the RPP? More...
 
#define V3PNT_IN_RPP_TOL(_pt, _lo, _hi, _t)
 Within the distance tolerance, is the point within the RPP? More...
 
#define V3PNT_OUT_RPP_TOL(_pt, _lo, _hi, _t)
 Is the point outside the RPP by at least the distance tolerance? This will not return true if the point is on the RPP. More...
 
#define V3RPP1_IN_RPP2(_lo1, _hi1, _lo2, _hi2)
 Determine if one bounding box is within another. Also returns true if the boxes are the same. More...
 
#define VSWAP(_a, _b)
 
#define V2SWAP(_a, _b)
 
#define HSWAP(_a, _b)
 
#define MAT_SWAP(_a, _b)
 
#define VINITALL(_v)   {(_v), (_v), (_v)}
 
#define V2INITALL(_v)   {(_v), (_v), (_v)}
 
#define HINITALL(_v)   {(_v), (_v), (_v), (_v)}
 
#define VINIT_ZERO   {0.0, 0.0, 0.0}
 
#define V2INIT_ZERO   {0.0, 0.0}
 
#define HINIT_ZERO   {0.0, 0.0, 0.0, 0.0}
 
#define MAT_INIT_IDN   {1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0}
 
#define MAT_INIT_ZERO   {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
 

Typedefs

typedef double fastf_t
 fastest 64-bit (or larger) floating point type More...
 
typedef fastf_t vect2d_t[ELEMENTS_PER_VECT2D]
 2-tuple vector More...
 
typedef fastf_tvect2dp_t
 pointer to a 2-tuple vector More...
 
typedef fastf_t point2d_t[ELEMENTS_PER_POINT2D]
 2-tuple point More...
 
typedef fastf_tpoint2dp_t
 pointer to a 2-tuple point More...
 
typedef fastf_t vect_t[ELEMENTS_PER_VECT]
 3-tuple vector More...
 
typedef fastf_tvectp_t
 pointer to a 3-tuple vector More...
 
typedef fastf_t point_t[ELEMENTS_PER_POINT]
 3-tuple point More...
 
typedef fastf_tpointp_t
 pointer to a 3-tuple point More...
 
typedef fastf_t hvect_t[ELEMENTS_PER_HVECT]
 4-tuple vector More...
 
typedef hvect_t quat_t
 4-element quaternion More...
 
typedef fastf_t hpoint_t[ELEMENTS_PER_HPOINT]
 4-tuple point More...
 
typedef fastf_t mat_t[ELEMENTS_PER_MAT]
 4x4 matrix More...
 
typedef fastf_tmatp_t
 pointer to a 4x4 matrix More...
 
typedef fastf_t plane_t[ELEMENTS_PER_PLANE]
 Definition of a plane equation. More...
 
typedef enum vmath_vector_component_ vmath_vector_component
 
typedef enum vmath_matrix_component_ vmath_matrix_component
 

Enumerations

enum  vmath_vector_component_ {
  X = 0 , Y = 1 , Z = 2 , W = 3 ,
  H = W
}
 
enum  vmath_matrix_component_ {
  MSX = 0 , MDX = 3 , MSY = 5 , MDY = 7 ,
  MSZ = 10 , MDZ = 11 , MSA = 15
}
 

Detailed Description

fundamental vector, matrix, quaternion math macros

VMATH defines commonly needed macros for 2D/3D/4D math involving:

points (point2d_t, point_t, and hpoint_t), vectors (vect2d_t, vect_t, and hvect_t), quaternions (quat_t), planes (plane_t), and 4x4 matrices (mat_t).

By default, all floating point numbers are stored in arrays using the 'fastf_t' type definition. It should be manually typedef'd to the "fastest" 64-bit floating point type available on the current hardware with at least 64 bits of precision. On 16 and 32 bit machines, this is typically "double", but on 64 bit machines, it could be "float".

Matrix array elements have the following positions in the matrix:

| 0 1 2 3 | | 0 |
[ 0 1 2 3 ] | 4 5 6 7 | | 1 |
| 8 9 10 11 | | 2 |
| 12 13 14 15 | | 3 |
preVector (vect_t) Matrix (mat_t) postVector (vect_t)
fastf_t vect_t[ELEMENTS_PER_VECT]
3-tuple vector
Definition: vmath.h:349
fastf_t mat_t[ELEMENTS_PER_MAT]
4x4 matrix
Definition: vmath.h:370

Note that while many people in the computer graphics field use post-multiplication with row vectors (i.e., vector * matrix * matrix ...) VMATH uses the more traditional representation of column vectors (i.e., ... matrix * matrix * vector). (The matrices in these two representations are the transposes of each other). Therefore, when transforming a vector by a matrix, pre-multiplication is used, i.e.:

view_vec = model2view_mat * model_vec

Furthermore, additional transformations are multiplied on the left, i.e.:

vec' = T1 * vec
vec'' = T2 * T1 * vec = T2 * vec'

The most notable implication of this is the location of the "delta" (translation) values in the matrix, i.e.:

x' (R0 R1 R2 Dx) x
y' = (R4 R5 R6 Dy) * y
z' (R8 R9 R10 Dz) z
w' (0 0 0 1/s) w
void float float * y
Definition: tig.h:73
void float float float * z
Definition: tig.h:90
void float * x
Definition: tig.h:72

Note -
vect_t objects are 3-tuples
hvect_t objects are 4-tuples

Most of these macros require that the result be in separate storage, distinct from the input parameters, except where noted.

IMPLEMENTER NOTES

When writing macros like this, it is very important that any variables declared within a macro code blocks start with an underscore in order to (hopefully) minimize any name conflicts with user-provided parameters, such as _f in the following example:

#define ABC() do { double _f; do stuff; } while (0)

All of the macros that introduce a scope like the preceding example are written as do { } while (0) loops in order to require callers provide a trailing semicolon (e.g., ABC();). This helps preserve source code formatting.

Definition in file vmath.h.